bzoj2818Gcd

Description

给定整数N,求1<=x,y<=N且Gcd(x,y)为素数的
数对(x,y)有多少对.

Input

一个整数N

Output

如题

Sample Input

4

Sample Output

4
HINT

hint

对于样例(2,2),(2,4),(3,3),(4,2)

1<=N<=10^7

Source

湖北省队互测

题解:

要求

gcd(x,y)==p

那么就是求
gcd(x/p,y/p)==1

也就是对于每个p求
2i=1n/pphi[i]

又因为
gcd(p,p)==p

所以最后答案就是
p((2i=1n/pphi[i])+1)

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
const int maxn=10000000+10;
int prime[maxn];
int phi[maxn];
ll sum[maxn];
int vis[maxn];
int n;
int ps=0;
inline void get_prime(int x){
    for(int i=2;i<=x;i++){
        if(!vis[i]){
            phi[i]=i-1;
            prime[++ps]=i;
        }
        for(int j=1;j<=ps&&i*prime[j]<=x;j++){
            vis[i*prime[j]]=1;
            if(i%prime[j])
                phi[i*prime[j]]=phi[i]*(prime[j]-1);
            else {
                phi[i*prime[j]]=phi[i]*prime[j];
                break;
            }
        }
    }

}
int main(){
    //freopen("a.in","r",stdin);
    //freopen("a.out","w",stdout);
    int n;
    scanf("%d",&n);
    get_prime(n);
    for(int i=2;i<=n;i++)
        sum[i]=sum[i-1]+phi[i];
    ll ans=0;
    for(int i=1;i<=ps;i++)
        ans+=sum[n/prime[i]];
    printf("%lld\n",ans*2+ps);
return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值