9-线性分类-朴素贝叶斯分类器

1.朴素贝叶斯分类器核心思想

朴素贝叶斯分类器的核心思想是:条件独立性假设,为了方便计算

2.条件独立性假设

条件独立性假设用如下图表述,是一个简单的有向图,就是在y确定的条件下, x i 与 y i 独 立 x_i与y_i独立 xiyi
在这里插入图片描述
用数学表达:
x i ⊥ x j ∣ y ; 其 中 i ≠ j (1) x_i \perp x_j |y;其中i≠j \tag{1} xixjy;i=j(1)
一定是在y存在的情况下, x i 独 立 于 x j x_i独立于x_j xixj
X = ( x 1 , x 2 , ⋯   , x p ) T , 朴 素 贝 叶 斯 分 类 器 主 要 是 说 明 在 一 个 数 据 X 里 面 的 特 征 向 量 x i 和 x j 相 互 独 立 X= (x_1,x_2,\cdots,x_p)^T,朴素贝叶斯分类器主要是说明在一个数据X里面的特征向量x_i和x_j相互独立 X=(x1,x2,,xp)T,Xxixj
根据贝叶斯公式可以得:
p ( y ∣ x ) = p ( x ∣ y ) p ( y ) p ( x ) = p ( x , y ) p ( x ) ∝ p ( x , y ) (2) p(y|x)=\frac{p(x|y)p(y)}{p(x)}=\frac{p(x,y)}{p(x)}\propto p(x,y) \tag{2} p(yx)=p(x)p(xy)p(y)=p(x)p(x,y)p(x,y)(2)

3.贝叶斯分类器的模型构建

3.1目标函数:

y ^ = a r g m a x y ∈ { 0 , 1 } p ( y ∣ x ) (3) \hat{y}=argmax_{y \in\{0,1\}}p(y|x)\tag{3} y^=argmaxy{0,1}p(yx)(3)
y ^ = a r g m a x y ∈ { 0 , 1 } p ( x ∣ y ) p ( y ) (4) \hat{y}=argmax_{y \in\{0,1\}}p(x|y)p(y)\tag{4} y^=argmaxy{0,1}p(xy)p(y)(4)
p ( x ∣ y ) 由 于 我 们 定 义 为 条 件 独 立 性 假 设 , 所 以 可 得 如 下 : p(x|y)由于我们定义为条件独立性假设,所以可得如下: p(xy)
p ( x ∣ y ) = ∏ i = 1 N p ( x i ∣ y ) (5) p(x|y)=\prod_{i=1}^{N}p(x_i|y) \tag{5} p(xy)=i=1Np(xiy)(5)
p ( y ) 可 以 根 据 实 际 情 况 分 为 : 二 分 类 问 题 − 伯 努 利 分 布 , 多 分 类 问 题 − 类 别 分 布 p(y)可以根据实际情况分为:二分类问题-伯努利分布,多分类问题-类别分布 p(y)
先 验 / 离 散 特 征 / 二 分 类 问 题 = p ( y ) ∼ B e r n o u l l i D i s t r i b u t i o n (6) 先验/离散特征/二分类问题=p(y) \sim Bernoulli \quad Distribution \tag{6} //=p(y)BernoulliDistribution(6)
先 验 / 离 散 特 征 / 多 分 类 问 题 = p ( y ) ∼ C a t e g o r i a l D i s t r i b u t i o n (7) 先验/离散特征/多分类问题=p(y) \sim Categorial \quad Distribution \tag{7} //=p(y)CategorialDistribution(7)
朴素贝叶斯分类器和高斯判别分析的区别:离散和连续,伯努利分布和高斯分布:
先 验 / 连 续 特 征 / 多 分 类 问 题 = p ( y ) ∼ C a t e g o r i a l D i s t r i b u t i o n (8) 先验/连续特征/多分类问题=p(y) \sim Categorial \quad Distribution \tag{8} //=p(y)CategorialDistribution(8)

3.2 极大似然估计

y ^ = a r g m a x y ∈ { 0 , 1 } p ( x ∣ y ) p ( y ) ; 对 此 项 进 行 M L E 计 算 (9) \hat{y}=argmax_{y \in\{0,1\}}p(x|y)p(y);对此项进行MLE计算\tag{9} y^=argmaxy{0,1}p(xy)p(y);MLE(9)
我们知道了 p ( x ∣ y ) 和 p ( y ) p(x|y)和p(y) p(xy)p(y)的概率模型,具体求值MLE可以参考:
8-线性分类-高斯判别分析

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值