1. 原理
我们在思考,深度神经网络到底是在学习什么?程序在经过学习后到底是做什么?其实很简单,当我们得到一个输入 X和输出 Y,我们希望得到一个映射函数,即所谓的卷积核,通过不断的迭代来更新我们权重的值,最终得到一个符合我们输入X 和输出 Y 的卷积核值;我们可以通过这个值来进行后续的预测
1.1 代码思路
2.代码
# 1. 定义卷积操作
import torch
from torch import nn
#from d2l import torch as d2l
# 1. 定义卷积操作
def conv2dd(X, K):
H, W = K.shape
Y = torch.zeros((X.shape[0] - H + 1, X.shape[1] - W + 1))
for i in range(Y.shape[0]):
for j in range(Y.shape[1]):
Y[i, j] = (X[i:i + H, j:j + W] * K).sum()
return Y
# 2. 定义卷积类
class Conv2d(nn.Module):
def __init__(self, kernel_size):
super().__init__()
self.weight = nn.Parameter(torch.rand(kernel_size))
self.bias = nn.Parameter(torch.ones(1))
def forward(self, x):
return conv2dd(x, self.weight) + self.bias
# 3. 定义需要学习的卷积核:
# 注:构造⼀个⼆维卷积层,它具有1个输出通道和形状为(1,2)的卷积核
conv2d = nn.Conv2d(1, 1, kernel_size=(1, 2), bias=False)
# 4. 定义初始数据
X = torch.ones((6, 8))
X[:, 2:6] = 0
# 这是我们需要学习到的卷积核,
# 目标:最终通过梯度下降的情况下看是否跟这个卷积核一样
K = torch.tensor([[1.0, -1.0]])
# 5. 定义目标数据
Y = conv2dd(X, K)
# 6. 将初始数据与目标数据进行整理
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
# 7.十次迭代,训练得到需要的卷积核
for i in range(30):
Y_hat = conv2d(X) # 对初始化数据X 进行卷积操作,卷积核kernel_size=(1,2)
l = (Y_hat - Y) ** 2 # 计算损失值
conv2d.zero_grad() # 对卷积核进行梯度清零
l.sum().backward() # 损失值反向传播
conv2d.weight.data[:] -= 3e-2 * conv2d.weight.grad # 对卷积核值进行更新学习
if (i + 1) % 2 == 0:
print(f'batch{i + 1},loss={l.sum():.3f}')
print(f'weight={conv2d.weight.data.reshape(1, 2)}')
3.运行结果
batch2,loss=1.970
batch4,loss=0.335
batch6,loss=0.058
batch8,loss=0.011
batch10,loss=0.002
batch12,loss=0.000
batch14,loss=0.000
batch16,loss=0.000
batch18,loss=0.000
batch20,loss=0.000
batch22,loss=0.000
batch24,loss=0.000
batch26,loss=0.000
batch28,loss=0.000
batch30,loss=0.000
weight=tensor([[ 1.0000, -1.0000]])
2. 分析
通过上述例子,我们手写了一个纯机器学习模型。我们可以清楚地发现。在只有输入和输出情况下,神经网络是如何学习到卷积核的参数的,我们发现最后所得的权重 weight矩阵 与我们起初的矩阵值差不多了,是不是很神奇,居然学出来了。。。
# 最初我们定义的矩阵
K = torch.tensor([[1.0, -1.0]])
# 我们通过神经网络学习到的矩阵
weight=tensor([[ 1.0000, -1.0000]])
# 以上两个矩阵 K ≈ weight
3.思考
由上述问题来说,我们发现神经网络就像一个函数模拟器一样,通过输入和输出的结果,我们通过学习,就可以得到一个比较好的函数模拟器,通过这个函数模拟器来处理这类问题(输入和输出类别一样的数据集)