1. 函数说明
class torch.nn.AvgPool2d(kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None)
- 作用:在由多个输入平面组成的输入信号上应用二维平均池。
- kernel_size:卷积核的大小
- stride: 步幅大小
- padding : 填充
2. 使用范例
我们想对如下(4,4)的矩阵应用一个(2,2)卷积核进行求平均,那么我们可以使用一个平均池化层
# -*- coding: utf-8 -*-
# @Project: zc
# @Author: zc
# @File name: avgpool_test
# @Create time: 2022/2/27 20:30
import torch
from torch import nn
x = torch.arange(16,dtype=torch.float32).reshape(1,4, 4)
avg = nn.AvgPool2d(kernel_size=2,stride=1)
print(f"avg={avg}")
y = avg(x)
print(f"x={x}")
print(f"y={y}")
x=tensor([[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]]])
y=tensor([[[ 2.5000, 3.5000, 4.5000],
[ 6.5000, 7.5000, 8.5000],
[10.5000, 11.5000, 12.5000]]])