可解性和解的结构


本文的目的是为了求得方程组的解
A X = b (1) AX=b\tag{1} AX=b(1)

  • 关于X的解可以是无解,有唯一解,无数解这几种情况。

1. 消元

假设我们有一个方程组表示如下:
x 1 + 2 x 2 + 2 x 3 + 2 x 4 = b 1 (2) x_1+2x_2+2x_3+2x_4=b_1\tag{2} x1+2x2+2x3+2x4=b1(2)
2 x 1 + 4 x 2 + 6 x 3 + 8 x 4 = b 2 2x_1+4x_2+6x_3+8x_4=b_2 2x1+4x2+6x3+8x4=b2
3 x 1 + 6 x 2 + 8 x 3 + 10 x 4 = b 3 3x_1+6x_2+8x_3+10x_4=b_3 3x1+6x2+8x3+10x4=b3

  • 矩阵化可得如下:
    A ∣ b = [ 1 2 2 2 b 1 2 4 6 8 b 2 3 6 8 10 b 3 ] (3) A|b=\begin{bmatrix}1&2&2&2&b_1\\\\2&4&6&8&b_2\\\\3&6&8&10&b_3\end{bmatrix}\tag{3} Ab= 1232462682810b1b2b3 (3)

  • 化简上述增广矩阵A|b
    A ∣ b = [ 1 2 2 2 b 1 0 0 2 4 b 2 − 2 b 1 0 0 2 4 b 3 − 3 b 1 ] (4) A|b=\begin{bmatrix}1&2&2&2&b_1\\\\0&0&2&4&b_2-2b_1\\\\0&0&2&4&b_3-3b_1\end{bmatrix}\tag{4} Ab= 100200222244b1b22b1b33b1 (4)

  • 化简上述增广矩阵A|b
    A ∣ b = [ 1 2 2 2 b 1 0 0 2 4 b 2 − 2 b 1 0 0 0 0 b 3 − b 2 − b 1 ] (5) A|b=\begin{bmatrix}1&2&2&2&b_1\\\\0&0&2&4&b_2-2b_1\\\\0&0&0&0&b_3-b_2-b_1\end{bmatrix}\tag{5} Ab= 100200220240b1b22b1b3b2b1 (5)

  • 由上图可以看出,最后一行全为0才能满足方程有解
    b 3 − b 2 − b 1 = 0 ⇒ b 3 = b 2 + b 1 (6) b_3-b_2-b_1=0\Rightarrow b_3=b_2+b_1\tag{6} b3b2b1=0b3=b2+b1(6)

  • 结论:
    A X = b 有解的条件是 : 向量 b 是向量 A 中各个列向量的组合。 AX=b有解的条件是:向量b 是向量A中各个列向量的组合。 AX=b有解的条件是:向量b是向量A中各个列向量的组合。

2. 解方程

2.1 求特解

为了求AX=b的所有解,我们一般分2步:第1步求特解,第2步求零空间

  • 当我们令 b = [ 1 5 6 ] T b=\begin{bmatrix}1&5&6\end{bmatrix}^T b=[156]T,可以简化增广矩阵如下:
    A ∣ b = [ 1 2 2 2 1 0 0 2 4 3 0 0 0 0 0 ] (7) A|b=\begin{bmatrix}1&2&2&2&1\\\\0&0&2&4&3\\\\0&0&0&0&0\end{bmatrix}\tag{7} Ab= 100200220240130 (7)
  • 我们令自由变量 x 2 = 0 , x 4 = 0 x_2=0,x_4=0 x2=0,x4=0代入方程可得 x 1 = − 2 , x 3 = 3 2 x_1=-2,x_3=\frac{3}{2} x1=2,x3=23.
    X p = [ − 2 0 3 2 0 ] T (8) X_p=\begin{bmatrix}-2&0&\frac{3}{2}&0\end{bmatrix}^T\tag{8} Xp=[20230]T(8)

2.2 求零解

  • 简化矩阵 A A A表示如下:
    A = [ 1 2 0 − 2 0 0 1 2 0 0 0 0 ] (7) A=\begin{bmatrix}1&2&0&-2\\\\0&0&1&2\\\\0&0&0&0\end{bmatrix}\tag{7} A= 100200010220 (7)
  • 如图所示可以看出主列为第1列和第3列,可以求解零解如下:
  • x 2 = 1 , x 4 = 0 x_2=1,x_4=0 x2=1,x4=0,可以解得 x 1 = − 2 , x 3 = 0 x_1=-2,x_3=0 x1=2,x3=0
    x n 1 = [ − 2 1 0 0 ] T (8) x_{n1}=\begin{bmatrix}-2&1&0&0\end{bmatrix}^T\tag{8} xn1=[2100]T(8)
  • x 2 = 0 , x 4 = 1 x_2=0,x_4=1 x2=0,x4=1,可以解得 x 1 = 2 , x 3 = − 2 x_1=2,x_3=-2 x1=2,x3=2
    x n 1 = [ 2 0 − 2 1 ] T (9) x_{n1}=\begin{bmatrix}2&0&-2&1\end{bmatrix}^T\tag{9} xn1=[2021]T(9)

2.3 通解

X = [ − 2 0 3 2 0 ] + k 1 [ − 2 1 0 0 ] + k 2 [ 2 0 − 2 1 ] (10) X=\begin{bmatrix}-2\\\\0\\\\\frac{3}{2}\\\\0\end{bmatrix}+k_1\begin{bmatrix}-2\\\\1\\\\0\\\\0\end{bmatrix}+k_2\begin{bmatrix}2\\\\0\\\\-2\\\\1\end{bmatrix}\tag{10} X= 20230 +k1 2100 +k2 2021 (10)

  • 8
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值