23.微分方程exp(At)


这节课涉及到微分方程,我们要讲解的是怎么解一阶微分方程。一阶导数,常系数线性方程,并把微分方程转换成线性代数矩阵的形式。这里面关键的是常系数线性方程组的解是指数形式的

1. 微分方程

现在我们有一组微分方程,表示如下:
d u 1 d t = − u 1 + 2 u 2 ; d u 2 d t = u 1 − 2 u 2 \begin{equation} \frac{\mathrm{d}u_1}{\mathrm{d}t}=-u_1+2u_2;\\\\ \frac{\mathrm{d}u_2}{\mathrm{d}t}=u_1-2u_2\\\\ \end{equation} dtdu1=u1+2u2;dtdu2=u12u2

  • 换成矩阵形式如下:
    u = [ u 1 u 2 ] ; d u d t = [ d u 1 d t d u 2 d t ] = [ − 1 2 1 − 2 ] [ u 1 u 2 ] ; \begin{equation} u=\begin{bmatrix}u_1\\\\u_2\end{bmatrix};\frac{\mathrm{d}u}{\mathrm{d}t}=\begin{bmatrix}\frac{\mathrm{d}u_1}{\mathrm{d}t}\\\\\frac{\mathrm{d}u_2}{\mathrm{d}t}\end{bmatrix}=\begin{bmatrix}-1&2\\\\1&-2\end{bmatrix}\begin{bmatrix}u_1\\\\u_2\end{bmatrix}; \end{equation} u= u1u2 ;dtdu= dtdu1dtdu2 = 1122 u1u2 ;
    d u d t = [ − 1 2 1 − 2 ] u ; A = [ − 1 2 1 − 2 ] \begin{equation} \frac{\mathrm{d}u}{\mathrm{d}t}=\begin{bmatrix}-1&2\\\\1&-2\end{bmatrix}u;A=\begin{bmatrix}-1&2\\\\1&-2\end{bmatrix} \end{equation} dtdu= 1122 u;A= 1122
  • 整理后可得如下微分方程:
    d u d t = A u ; u 0 = [ 1 0 ] ; A = [ − 1 2 1 − 2 ] \begin{equation} \frac{\mathrm{d}u}{\mathrm{d}t}=Au;u_0=\begin{bmatrix}1\\\\0\end{bmatrix};A=\begin{bmatrix}-1&2\\\\1&-2\end{bmatrix} \end{equation} dtdu=Auu0= 10 ;A= 1122
  • 求解矩阵A的特征值和特征向量矩阵S
    λ 1 = 0 , v 1 = [ 2 , 1 ] T ; λ 2 = − 3 , v 2 = [ 1 , − 1 ] T \begin{equation} \lambda_1=0,v_1=[2,1]^T;\lambda_2=-3,v_2=[1,-1]^T \end{equation} λ1=0,v1=[2,1]T;λ2=3,v2=[1,1]T
  • 当特征值为负数的时候, e − 3 t e^{-3t} e3t会随着 t 无穷大后趋近于0.另外一个解 e 0 t = 1 e^{0t}=1 e0t=1,变成了一个常数,也就是控制工程里面的稳态方程。
    u ( t ) = c 1 e 0 t [ 2 1 ] + c 2 e − 3 t [ 1 − 1 ] = c 1 [ 2 1 ] + c 2 e − 3 t [ 1 − 1 ] \begin{equation} u(t)=c_1e^{0t}\begin{bmatrix}2\\\\1\end{bmatrix}+c_2e^{-3t}\begin{bmatrix}1\\\\-1\end{bmatrix}=c_1\begin{bmatrix}2\\\\1\end{bmatrix}+c_2e^{-3t}\begin{bmatrix}1\\\\-1\end{bmatrix} \end{equation} u(t)=c1e0t 21 +c2e3t 11 =c1 21 +c2e3t 11
  • 又因为 u 0 = [ 1 , 0 ] T u_0=[1,0]^T u0=[1,0]T,得到u(t)为
    u ( t ) = 1 3 [ 2 1 ] + 1 3 e − 3 t [ 1 − 1 ] \begin{equation} u(t)=\frac{1}{3}\begin{bmatrix}2\\\\1\end{bmatrix}+\frac{1}{3}e^{-3t}\begin{bmatrix}1\\\\-1\end{bmatrix} \end{equation} u(t)=31 21 +31e3t 11
  • 当t趋近于无穷的时候,u(t)趋近于稳态
    lim ⁡ t → ∞ u ( t ) = 1 3 [ 2 1 ] \begin{equation} \lim_{t \to \infty}u(t)=\frac{1}{3}\begin{bmatrix}2\\\\1\end{bmatrix} \end{equation} tlimu(t)=31 21

2. 稳态方程

2.1 收敛速度

从上面可以看出来,当特征值的实数部分小于零时候,u(t)趋近于0.

  • 根据欧拉公式可得:
    e 6 i = cos ⁡ ( 6 ) + i sin ⁡ ( 6 ) , e 6 i 的模为 1 \begin{equation} e^{6i}=\cos(6)+i\sin(6),e^{6i}的模为1 \end{equation} e6i=cos(6)+isin(6),e6i的模为1
    ∣ e ( − 3 + 6 i ) t ∣ = ∣ e − 3 t ∣ ; \begin{equation} |e^{(-3+6i)t}|=|e^{-3t}|; \end{equation} e(3+6i)t=e3t;
    综上所述,特征值决定了u(t)收敛速度,特征值虚数部分表示震荡。

2.2 稳定状态

我们可以看出来,稳定状态为特征值 λ = 0 \lambda=0 λ=0是对应的特征向量 v 1 v_1 v1的倍数。当 λ < 0 \lambda < 0 λ<0时,对应部分的u(t)=0;任何特征值 λ > 0 \lambda>0 λ>0时,状态就不收敛,无法达到稳定状态,也就发散了。

  • 当我们有一个2X2的矩阵A时,在不计算特征值的情况下,如何判断特征值是否小于0
    A = [ a b c d ] , λ 1 < ? 0 , λ 2 < ? 0 , \begin{equation} A=\begin{bmatrix}a&b\\\\c&d\end{bmatrix},\lambda_1<? 0,\lambda_2<? 0, \end{equation} A= acbd ,λ1<?0,λ2<?0,
  • 我们知道如下公式
    d e t ( A ) = λ 1 λ 2 = a d − c b > 0 ; a + d = λ 1 + λ 2 < 0 \begin{equation} det(A)=\lambda_1\lambda_2=ad-cb>0;a+d=\lambda_1+\lambda_2<0 \end{equation} det(A)=λ1λ2=adcb>0;a+d=λ1+λ2<0
    也就说在我们知道 d e t ( A ) > 0 , a + d < 0 det(A)>0,a+d<0 det(A)>0,a+d<0的时候,我们就能在不计算特征值的情况下知道 λ 1 < 0 , λ 2 < 0 \lambda_1<0,\lambda_2<0 λ1<0,λ2<0

2. 一阶微分方程

2.1 通解求解

我们知道微分方程如下:
d u d t = A u \begin{equation} \frac{\mathrm{d}u}{\mathrm{d}t}=Au \end{equation} dtdu=Au
我们想通过特征向量的方式把矩阵A进行分解,得到如下:

  • 其中S为矩阵A的特征向量组成的矩阵,与u无关,只要A确定了,就可以看做是关于u的常数, Λ \Lambda Λ为特征值组成的方阵
    d u d t = S Λ S − 1 u \begin{equation} \frac{\mathrm{d}u}{\mathrm{d}t}=S\Lambda S^{-1}u \end{equation} dtdu=SΛS1u
  • 化简上述方程
    1 u d u = S Λ S − 1 d t \begin{equation} \frac{1}{u}du=S\Lambda S^{-1}dt \end{equation} u1du=SΛS1dt
  • 两边求积分可得
    ln ⁡ ( u ) = S Λ S − 1 + C \begin{equation} \ln (u)=S\Lambda S^{-1} +C \end{equation} ln(u)=SΛS1+C
    u ( t ) = S e Λ t S − 1 k \begin{equation} u(t)=Se^{\Lambda t} S^{-1} k \end{equation} u(t)=SeΛtS1k
  • 其中k 相当于常数,可以用 u 0 u_0 u0值代替求得:
    u ( t ) = S e Λ t S − 1 u ( 0 ) \begin{equation} u(t)=Se^{\Lambda t} S^{-1} u(0) \end{equation} u(t)=SeΛtS1u(0)
  • 我们化简 S e Λ t S − 1 Se^{\Lambda t} S^{-1} SeΛtS1
  • 由于我们知道对于任意矩阵A来说,可以根据特征值和特征向量分解:
    A = S − 1 Λ S ⇒ A t = S − 1 ( Λ t ) S ⇒ ( A t ) n = S − 1 ( Λ t ) n S \begin{equation} A=S^{-1}\Lambda S \Rightarrow At=S^{-1}(\Lambda t)S\Rightarrow (At)^n=S^{-1}(\Lambda t)^{n}S \end{equation} A=S1ΛSAt=S1(Λt)S(At)n=S1(Λt)nS
  • 我们知道 e x e^x ex的泰勒公式如下:
    e x = 1 + x + x 2 2 ! + ⋯ + x n n ! \begin{equation} e^x=1+x+\frac{x^2}{2!}+\cdots+\frac{x^n}{n!} \end{equation} ex=1+x+2!x2++n!xn
  • Λ t \Lambda t Λt换成x 可得如下:
    e Λ t = 1 + Λ t + ( Λ t ) 2 2 ! + ⋯ + ( Λ t ) n n ! \begin{equation} e^{\Lambda t}=1+\Lambda t+\frac{{(\Lambda t)}^2}{2!}+\cdots+\frac{{(\Lambda t)}^n}{n!} \end{equation} eΛt=1+Λt+2!(Λt)2++n!(Λt)n
  • 将等式左右乘以 S − 1 , S S^{-1},S S1,S
    S − 1 e Λ t S = S − 1 S + S − 1 Λ t S + S − 1 Λ t 2 S 2 ! + ⋯ + S − 1 ( Λ t ) n S n ! \begin{equation} S^{-1}e^{\Lambda t}S=S^{-1}S+S^{-1}\Lambda tS+\frac{S^{-1}{\Lambda t}^2S}{2!}+\cdots+\frac{S^{-1}{(\Lambda t)}^nS}{n!} \end{equation} S1eΛtS=S1S+S1ΛtS+2!S1Λt2S++n!S1(Λt)nS
  • ( A t ) n = S − 1 ( Λ t ) n S (At)^n=S^{-1}(\Lambda t)^{n}S (At)n=S1(Λt)nS代替可得
    S − 1 e Λ t S = I + A t + ( A t ) 2 2 ! + ⋯ + ( A t ) n n ! \begin{equation} S^{-1}e^{\Lambda t}S=I+At +\frac{(At)^2}{2!}+\cdots+\frac{(At)^n}{n!} \end{equation} S1eΛtS=I+At+2!(At)2++n!(At)n
  • A t At At代替 e x e^x ex中的x可得
    e A t = 1 + A t + ( A t ) 2 2 ! + ⋯ + ( A t ) n n ! \begin{equation} e^{At}=1+{At}+\frac{({At})^2}{2!}+\cdots+\frac{{(At)}^n}{n!} \end{equation} eAt=1+At+2!(At)2++n!(At)n
  • 发现没有,第23公式右边和第24公式右边一样,所以两个等式相等,得出结论如下:
    S − 1 e Λ t S = e A t \begin{equation} S^{-1}e^{\Lambda t}S=e^{At} \end{equation} S1eΛtS=eAt
  • 带入到我们 u ( t ) u(t) u(t)通解中可得, 结论!!!!,前提是矩阵A可以对角化!!!!:
    u ( t ) = S e Λ t S − 1 u ( 0 ) = e A t u ( 0 ) \begin{equation} u(t)=Se^{\Lambda t} S^{-1} u(0)=e^{At}u(0) \end{equation} u(t)=SeΛtS1u(0)=eAtu(0)

2.1.1 微分方程

d u d t = A u \begin{equation} \frac{\mathrm{d}u}{\mathrm{d}t}=Au \end{equation} dtdu=Au

  • 对于上述方程来说, u ( t ) = S e Λ t S − 1 u ( 0 ) u(t)=Se^{\Lambda t} S^{-1} u(0) u(t)=SeΛtS1u(0),当 t 趋向于无穷大的时候,当特征值 λ i = 0 \lambda_i=0 λi=0的对应的特征向量部分不会随着t的变化变得无穷大,当特征值 λ i < 0 \lambda_i <0 λi<0的部分由于 e − t e^{-t} et会发现逐渐为0,;
  • 其实这里我们看到原来的矩阵是一个A,这里面可以看做是有特征向量矩阵S组合而成,我们可以将 e A t e^{At} eAt分解为 S e Λ t S − 1 S e^{\Lambda t} S^{-1} SeΛtS1,这样可以在特征矩阵中单独去看每个特征值对于幂计算时的影响,而不是用一个A来表示,矩阵A虽然是常数,但是矩阵A系数之间是相互有联系的,所以我们把矩阵A分解出来,这样我们就知道每个特征值的影响了

2.1.2 差分方程

u k + 1 = A u k ⇒ u k = A k u 0 \begin{equation} u_{k+1}=Au_k\Rightarrow u_k=A^ku_0 \end{equation} uk+1=Aukuk=Aku0
u k = S Λ k S − 1 S C = S Λ k C \begin{equation} u_k=S\Lambda^kS^{-1}SC=S\Lambda^kC \end{equation} uk=SΛkS1SC=SΛkC

  • 对于差分方程来说,我们在通解中发现, u k u_k uk的值跟特征值有关,当k趋近于无穷的时候,当 ∣ λ i ∣ < 1 |\lambda_i|<1 λi<1时, λ i k \lambda_i^k λik
    lim ⁡ k → ∞ λ i k = 0 ; ∣ λ i ∣ < 1 \begin{equation} \lim_{k \to \infty} \lambda_i^k=0; |\lambda_i|<1 \end{equation} klimλik=0;λi<1

2.2 思考

  • 什么样的特征值使得微分方程存在稳定解呢?
    当矩阵A的特征值实数部分小于0,那么微分方程存在稳定解
  • 什么样的特征值使得矩阵的高次幂收敛于0?
    当矩阵A的特征值的绝对值小于1,那么矩阵的高次幂收敛于0。

3. 二阶微分方程

假设我们有如下二次微分方程
y ′ ′ + b y ′ + k y = 0 \begin{equation} y^{''} + b y^{'} +ky=0 \end{equation} y′′+by+ky=0

  • 转换成矩阵形式如下:
    u = [ y ′ y ] ; u ′ = [ − b − k 1 0 ] u \begin{equation} u=\begin{bmatrix}y^{'}\\\\y\end{bmatrix};u^{'}=\begin{bmatrix}-b&-k\\\\1&0\end{bmatrix}u \end{equation} u= yy ;u= b1k0 u
    !!!真神奇!!!
  • 13
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值