差分方程与exp(At)

这篇文章的主题是“解耦”

如下面这个不等式,其中u是t的函数,且有


上式中相互作用,这种关系就是耦合,我们的任务就是解除二者之间这种纠结的关系,至于解耦的好处不必多说了,大家能罗列许多。

为了解决这个问题,需要介绍以下知识:

(1)差分方程

其中是列向量,是矩阵

以一个简单的矩阵为例


很容易观察到,A的迹(trace)为-3,A是奇异矩阵(singular),所以,矩阵A有一个特征值0,还有一个特征值-3,微分方程的解具有如下的形式


其中lambda(1)=0,lambda(2)=-3,x1和x2分别是对应的特征向量。我们可以将u(t)带入原式就可以知道,这是满足方程的解,由此我们得到了两个没有耦合关系的项,这样我们就实现了“解耦”

继续往下走,

由于,所以由对应系数相等我们可以解得

c1=c2=1/3,所以有


当t趋近于无穷大时,exp(-3t)=0,所以

上述描述了由本文最开始给出的差分方程所构建的系统的稳态。

(2)应用对角化方法

再次回到差分方程



在上面的解答步骤中我们可以得到


写成矩阵的形式如下


简记为Sc=u(0),其中S是特征向量所构成的矩阵。在方程中,u1和u2二者是耦合的关系,我们使用对角化方法,设u=Sv,其中S是对角阵,将具有耦合关系的u1和u2转为解耦的v1和v2,其中S是特征向量构成的矩阵,这很容易让人联想到矩阵的对角化,没有错,这里用的就是这个知识点。我们将u(t)=Sv(t)代入式中,得到

所以,

(3)矩阵指数函数

我们知道下面这两个泰勒级数


我们可以把矩阵指数函数exp(At)看成上面的第一个泰勒级数展开式


同理,I-At的倒数也可以写成如下的形式


如果矩阵A可以对角化(这个是前提),那么其中,是对角阵,对角线元素是矩阵A的特征值,且有


这个证明很容易,这里就不再累述。

我们如何看待这个式子呢,当A的特征值lambda(i)小于0时,exp(labmda(i)*t)在t趋近于无穷大时会收敛于0,趋于稳定,因此,如果一个系统由差分方程的形式给出时,我们需要考虑的是系统矩阵的特征值的实部,而虚部由欧拉公式展开可知其模为1,就是一个单位圆,Strang教授把虚部看成是小噪音,它只是一个在单位圆的圆周上绕转而已,而真正决定系统稳态的是实部,当实部为负数时,其矩阵指数函数最终会收敛。

最后一个要提的问题是,我们前面说的是2阶的系统,如果是更高阶的,比如系统由这样一个高阶方程表示


那怎么办呢,这里使用的小技巧是

,那么有,这样问题就得到了解决。对于更高阶的,系统矩阵A具有下面这样的形式

(这里假定是五阶系统)

down!微笑


  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值