25. 复习二

1. 正交矩阵

如果有一组长度为1且相互正交的向量,并且按照列组合在一起的矩阵,就叫正交矩阵;

  • 因为 q i q_i qi满足如下条件:
    q i T q j = { 0 , i ≠ j 1. i = j , ∣ ∣ q i ∣ ∣ = 1 \begin{equation} q_i^Tq_j=\left\{ \begin{array}{ll} 0, &i \neq j \\ 1.&i=j\\ \end{array}, \quad ||q_i||=1 \right. \end{equation} qiTqj={0,1.i=ji=j,∣∣qi∣∣=1
    Q = [ q 1 q 2 ⋯ q n ] ; Q T Q = I \begin{equation} Q=\begin{bmatrix}q_1&q_2&\cdots&q_n\end{bmatrix};Q^TQ=I \end{equation} Q=[q1q2qn];QTQ=I

2. 向量投影

我们有一个列向量 a = [ 2 , 1 , 2 ] T a = [2 , 1, 2 ]^T a=[2,1,2]T,我们需要找到一个投影矩阵P,满足给定任意一个向量b,都能满足向量c=Pb在向量a所在的直线上?
在这里插入图片描述

  • 方法1:向量法
    a T b = ∣ a ∣ ∣ b ∣ ⋅ cos ⁡ ( θ ) = ∣ a ∣ ∣ p ∣ \begin{equation} a^Tb=|a||b|\cdot\cos(\theta)=|a||p| \end{equation} aTb=a∣∣bcos(θ)=a∣∣p

  • 向量p可以表示为向量长度乘以方向
    p = ∣ p ∣ ⋅ a ∣ a ∣ = a T b ∣ a ∣ ⋅ a ∣ a ∣ = a a T a T a b \begin{equation} p=|p|\cdot\frac{a}{|a|}=\frac{a^Tb}{|a|}\cdot\frac{a}{|a|}=\frac{aa^T}{a^Ta}b \end{equation} p=paa=aaTbaa=aTaaaTb

  • 我们可以得出投影矩阵P
    p = P b = a a T a T a b ; P = a a T a T a \begin{equation} p=Pb=\frac{aa^T}{a^Ta}b;P=\frac{aa^T}{a^Ta} \end{equation} p=Pb=aTaaaTb;P=aTaaaT

  • 将a向量带入可得:
    P = 1 9 [ 4 2 4 2 1 2 4 2 4 ] \begin{equation} P=\frac{1}{9}\begin{bmatrix}4&2&4\\\\2&1&2\\\\4&2&4\end{bmatrix} \end{equation} P=91 424212424

  • 我们可以在不计算的情况下求特征值

  • λ 1 \lambda_1 λ1
    P a = a a T a T a a = a ⇒ P a = 1 ⋅ a ⇒ λ 1 = 1 , v 1 = a \begin{equation} Pa=\frac{aa^T}{a^Ta}a=a\Rightarrow Pa=1\cdot a \Rightarrow \lambda_1=1,v_1=a \end{equation} Pa=aTaaaTa=aPa=1aλ1=1,v1=a

  • λ 2 \lambda_2 λ2,我们一定能找到一个向量垂直于P的列向量满足内积为0
    P e = 0 ⋅ e = 0 ⇒ λ 2 = 0 , v 2 = e \begin{equation} Pe=0\cdot e=0\Rightarrow \lambda_2=0,v_2=e \end{equation} Pe=0e=0λ2=0,v2=e

  • λ 3 \lambda_3 λ3
    λ 1 + λ 2 + λ 3 = 1 9 ( 4 + 1 + 4 ) = 1 ⇒ λ 3 = 0 \begin{equation} \lambda_1+\lambda_2+\lambda_3=\frac{1}{9}(4+1+4)=1 \Rightarrow \lambda_3=0 \end{equation} λ1+λ2+λ3=91(4+1+4)=1λ3=0

  • 综上所述,可以得到特征值:
    λ 1 = 1 ; λ 2 = 0 ; λ 3 = 0 ; \begin{equation} \lambda_1=1;\lambda_2=0;\lambda_3=0; \end{equation} λ1=1λ2=0λ3=0

  • 方法2:矩阵法
    在这里插入图片描述
    一般情况下,我们有方程 A x = b Ax=b Ax=b ,但通常情况下,我们发现 b 不在A的列空间中,也就是说b无法由A的列向量线性组合。这时候我们一般需要将向量b投影到A的列空间中得到向量p,那么明显就能够通过A的列空间线性组合而来,这是我们就用 x ^ \hat{x} x^ 近似解来代替 x ,并满足如下:
    p = A x ^ \begin{equation} p=A\hat{x} \end{equation} p=Ax^

  • 由图可得向量e垂直于整个A的列空间平面,e=b-p
    e = b − p ; a i T e = 0 \begin{equation} e=b-p;a_i^Te=0 \end{equation} e=bp;aiTe=0
    -用矩阵形式表示如下:
    [ a 1 T a 2 T ⋮ a n T ] ( b − p ) = 0 ; A T ( b − A x ^ ) = 0 \begin{equation} \begin{bmatrix}a_1^T\\\\a_2^T\\\\\vdots\\\\a_n^T\end{bmatrix}(b-p)=0;A^T(b-A\hat{x})=0 \end{equation} a1Ta2TanT (bp)=0;AT(bAx^)=0

  • A T A A^TA ATA可逆时,整理方程可得:
    A T A x ^ = A T b ⇒ x ^ = ( A T A ) − 1 A T b \begin{equation} A^TA\hat{x}=A^Tb \Rightarrow \hat{x}=(A^TA)^{-1}A^Tb \end{equation} ATAx^=ATbx^=(ATA)1ATb

  • 那么投影向量p可以表示如下:
    p = A x ^ = A ( A T A ) − 1 A T b \begin{equation} p=A\hat{x}=A(A^TA)^{-1}A^Tb \end{equation} p=Ax^=A(ATA)1ATb

  • 那么可以得到投影矩阵P表示如下:
    P = A ( A T A ) − 1 A T \begin{equation} P=A(A^TA)^{-1}A^T \end{equation} P=A(ATA)1AT
    -现在我们的A为列向量,那么可以整理得到:
    P = a ( a T a ) − 1 a T = a a T a T a ;跟上面的公式一致,真神奇!!! \begin{equation} P=a(a^Ta)^{-1}a^T=\frac{aa^T}{a^Ta};跟上面的公式一致,真神奇!!! \end{equation} P=a(aTa)1aT=aTaaaT;跟上面的公式一致,真神奇!!!

3. 差分方程

假设我们有一个投影矩阵P,和一个差分方程,表示如下:
P = 1 9 [ 4 2 4 2 1 2 4 2 4 ] ; u k + 1 = P u k ; u 0 = [ 9 9 0 ] ; a = [ 2 1 2 ] ; \begin{equation} P=\frac{1}{9}\begin{bmatrix}4&2&4\\\\2&1&2\\\\4&2&4\end{bmatrix};u_{k+1}=Pu_k;u_0=\begin{bmatrix}9\\\\9\\\\0\end{bmatrix};a=\begin{bmatrix}2\\\\1\\\\2\end{bmatrix}; \end{equation} P=91 424212424 uk+1=Puk;u0= 990 ;a= 212 ;

  • 我们可以递归得到 u 1 u_1 u1
    P = a a T a T a ; u k + 1 = a a T a T a u ; u k = P k u 0 ; P k = P \begin{equation} P=\frac{aa^T}{a^Ta};u_{k+1}=\frac{aa^T}{a^Ta}u;u_k=P^ku_0;P^k=P \end{equation} P=aTaaaT;uk+1=aTaaaTu;uk=Pku0;Pk=P
  • 整理可得:
    u k = P u 0 = a a T a T a u 0 = a T u 0 a T a a = 3 a = [ 6 3 6 ] ; \begin{equation} u_k=Pu_0=\frac{aa^T}{a^Ta}u_0=\frac{a^Tu_0}{a^Ta}a=3a=\begin{bmatrix}6\\\\3\\\\6\end{bmatrix}; \end{equation} uk=Pu0=aTaaaTu0=aTaaTu0a=3a= 636 ;

4. 直线拟合

假设我们有如下点,需要用通过原点的直线去拟合直线,使得误差最小。
A = ( 1 , 4 ) ; B = ( 2 , 5 ) ; C = ( 3 , 8 ) ; Y = D X \begin{equation} A=(1,4);B=(2,5);C=(3,8);Y=DX \end{equation} A=(1,4);B=(2,5);C=(3,8);Y=DX

  • 矩阵表达如下:
    [ 1 2 3 ] [ x 1 x 2 x 3 ] = [ 4 5 8 ] ⇒ a x = b \begin{equation} \begin{bmatrix} 1\\\\2\\\\3 \end{bmatrix}\begin{bmatrix} x_1\\\\x_2\\\\x_3 \end{bmatrix}=\begin{bmatrix} 4\\\\5\\\\8 \end{bmatrix}\Rightarrow ax=b \end{equation} 123 x1x2x3 = 458 ax=b
    方程法
  • 我们知道向量b不在向量a的列空间中,直接求解无法计算出来,所以需要将向量b投影到向量a所在的直线上。故两边同时乘以 a T a^T aT
    a T a x ^ = a T b ⇒ x ^ = a T b a T a = 19 7 \begin{equation} a^Ta\hat{x}=a^Tb\Rightarrow \hat{x}=\frac{a^Tb}{a^Ta}=\frac{19}{7} \end{equation} aTax^=aTbx^=aTaaTb=719

5. Gram-Schmidt正交化

假设我们有两个向量 a 1 , a 2 a_1,a_2 a1,a2表示如下,通过这两个向量,用Gram-Schmidt找到一组正交标准基。
a 1 = [ 1 2 3 ] ; a 2 = [ 1 1 1 ] \begin{equation} a_1=\begin{bmatrix}1\\\\2\\\\3\end{bmatrix};a_2=\begin{bmatrix}1\\\\1\\\\1\end{bmatrix} \end{equation} a1= 123 ;a2= 111

  • 第一个向量 b 1 = a 1 b_1=a_1 b1=a1
    b 1 = a 1 ; b 2 = a 2 − a 2 T b 1 b 1 T b 1 b 1 = [ 4 7 1 7 − 2 7 ] \begin{equation} b_1=a_1;b_2=a_2-\frac{a_2^Tb_1}{b_1^Tb_1}b_1=\begin{bmatrix}\frac{4}{7}\\\\\frac{1}{7}\\\\-\frac{2}{7}\end{bmatrix} \end{equation} b1=a1;b2=a2b1Tb1a2Tb1b1= 747172
  • 那么就得到一组标准正交基如下:
    b 1 = 1 14 [ 1 2 3 ] ; b 2 = 21 7 [ 4 7 1 7 − 2 7 ] \begin{equation} b_1=\frac{1}{\sqrt{14}}\begin{bmatrix}1\\\\2\\\\3\end{bmatrix};b_2=\frac{\sqrt{21}}{7}\begin{bmatrix}\frac{4}{7}\\\\\frac{1}{7}\\\\-\frac{2}{7}\end{bmatrix} \end{equation} b1=14 1 123 b2=721 747172

6. 矩阵A的行列式

矩阵A为4行4列,其特征值满足什么条件下,矩阵可逆?
d e t ( A ) = ∣ A ∣ = λ 1 λ 2 λ 3 λ 4 \begin{equation} det(A)=|A|=\lambda_1\lambda_2\lambda_3\lambda_4 \end{equation} det(A)=A=λ1λ2λ3λ4
由上公式可得:
λ 1 λ 2 λ 3 λ 4 ≠ 0 ⇒ ∣ A ∣ ≠ 0 ⇒ A 可逆 \begin{equation} \lambda_1\lambda_2\lambda_3\lambda_4\neq0 \Rightarrow |A|\neq0\Rightarrow A可逆 \end{equation} λ1λ2λ3λ4=0A=0A可逆

  • d e t ( A − 1 ) det(A^{-1}) det(A1)
    A x = λ x ⇒ A − 1 A x = λ A − 1 x ⇒ 1 λ x = A − 1 x \begin{equation} Ax=\lambda x\Rightarrow A^{-1}Ax=\lambda A^{-1}x \Rightarrow \frac{1}{\lambda}x=A^{-1}x \end{equation} Ax=λxA1Ax=λA1xλ1x=A1x
  • 所以可得:
    A − 1 x = 1 λ x \begin{equation} A^{-1}x=\frac{1}{\lambda}x \end{equation} A1x=λ1x
  • 可以得出:
    d e t ( A − 1 ) = ∣ A − 1 ∣ = 1 λ 1 1 λ 2 1 λ 3 1 λ 4 \begin{equation} det(A^{-1})=|A^{-1}|=\frac{1}{\lambda_1}\frac{1}{\lambda_2}\frac{1}{\lambda_3}\frac{1}{\lambda_4} \end{equation} det(A1)=A1=λ11λ21λ31λ41
  • d e t ( A + I ) det(A+I) det(A+I)
    B = A + I ; B x = A x + x = ( λ + 1 ) x \begin{equation} B=A+I;Bx=Ax+x=(\lambda +1)x \end{equation} B=A+I;Bx=Ax+x=(λ+1)x
    d e t ( B ) = ( λ 1 + 1 ) ( λ 2 + 1 ) ( λ 3 + 1 ) ( λ 4 + 1 ) \begin{equation} det(B)=(\lambda_1+1)(\lambda_2+1)(\lambda_3+1)(\lambda_4+1) \end{equation} det(B)=(λ1+1)(λ2+1)(λ3+1)(λ4+1)

7. 代数余子式

假设我们由一个矩阵A 表示如下:
A = [ 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 ] ; D n = d e t ( A n ) \begin{equation} A=\begin{bmatrix} 1&1&0&0\\\\ 1&1&1&0\\\\ 0&1&1&1\\\\ 0&0&1&1 \end{bmatrix};D_n=det(A_n) \end{equation} A= 1100111001110011 Dn=det(An)

  • 对矩阵进行代数余子式的按第一行分解
    D n = 1 ∗ ( − 1 ) 1 + 1 D n − 1 + 1 ∗ ( − 1 ) 1 + 2 D n − 2 \begin{equation} D_n=1*(-1)^{1+1}D_{n-1}+1*(-1)^{1+2}D_{n-2} \end{equation} Dn=1(1)1+1Dn1+1(1)1+2Dn2
    D n = D n − 1 − D n − 2 \begin{equation} D_n=D_{n-1}-D_{n-2} \end{equation} Dn=Dn1Dn2
  • 矩阵形式:
    [ D n D n − 1 ] = [ 1 − 1 1 0 ] [ D n − 1 D n − 2 ] ; u n = [ D n D n − 1 ] ⇒ u n = A u n − 1 \begin{equation} \begin{bmatrix} D_{n}\\\\ D_{n-1} \end{bmatrix}= \begin{bmatrix} 1&-1\\\\ 1&0 \end{bmatrix} \begin{bmatrix} D_{n-1}\\\\ D_{n-2} \end{bmatrix};u_n=\begin{bmatrix} D_{n}\\\\ D_{n-1} \end{bmatrix}\Rightarrow u_n=Au_{n-1} \end{equation} DnDn1 = 1110 Dn1Dn2 ;un= DnDn1 un=Aun1
  • 将矩阵A进行分解:
    λ 1 = 1 + 3 i 2 ; v 1 = [ λ 1 1 ] λ 2 = 1 − 3 i 2 ; v 2 = [ λ 2 1 ] \begin{equation} \lambda_1=\frac{1+\sqrt{3}i} {2};v_1=\begin{bmatrix}\lambda_1\\\\1\end{bmatrix}\lambda_2=\frac{1-\sqrt{3}i}{2};v_2=\begin{bmatrix}\lambda_2\\\\1\end{bmatrix} \end{equation} λ1=21+3 i;v1= λ11 λ2=213 i;v2= λ21
  • 根据欧拉公式: e θ i = cos ⁡ ( θ ) + i sin ⁡ ( θ ) e^{\theta i}=\cos(\theta)+i\sin(\theta) eθi=cos(θ)+isin(θ)化简特征值:
    λ 1 = e π 3 i ; λ 2 = e − π 3 i ; \begin{equation} \lambda_1=e^{\frac{\pi}{3}i};\lambda_2=e^{-\frac{\pi}{3}i}; \end{equation} λ1=e3πi;λ2=e3πi;
  • 可以看出, λ 6 = 1 \lambda^6=1 λ6=1,也就是说
    λ k + 6 = λ k ⋅ λ 6 = λ k ; Λ k + 6 = Λ k \begin{equation} \lambda^{k+6}=\lambda^{k}\cdot\lambda^6=\lambda^k;\Lambda^{k+6}=\Lambda^{k} \end{equation} λk+6=λkλ6=λkΛk+6=Λk
  • 换到矩阵中可得:
    A k + 6 = S Λ k + 6 S − 1 = S Λ k S − 1 = A k ; \begin{equation} A^{k+6}=S\Lambda^{k+6}S^{-1}=S\Lambda^{k}S^{-1}=A^{k}; \end{equation} Ak+6=SΛk+6S1=SΛkS1=Ak;
  • 也就是说矩阵 u k u_k uk每6次相乘后的结果跟原来一样。
    A [ λ 1 λ 2 1 1 ] = [ λ 1 λ 2 1 1 ] [ λ 1 0 0 λ 2 ] ⇒ A S = S Λ \begin{equation} A\begin{bmatrix}\lambda_1&\lambda_2\\\\1&1\end{bmatrix}=\begin{bmatrix}\lambda_1&\lambda_2\\\\1&1\end{bmatrix}\begin{bmatrix}\lambda_1&0\\\\0&\lambda_2\end{bmatrix}\Rightarrow AS=S\Lambda \end{equation} A λ11λ21 = λ11λ21 λ100λ2 AS=SΛ
  • u k u_k uk通解:
    u k = A k u 0 ; A = S Λ S − 1 ; A k = S Λ k S − 1 ; u 0 = S C 0 \begin{equation} u_k=A^ku_0;A=S\Lambda S^{-1};A^k=S\Lambda^kS^{-1};u_0=SC_0 \end{equation} uk=Aku0;A=SΛS1;Ak=SΛkS1;u0=SC0
    u k = S Λ k S − 1 S C 0 = S Λ k C 0 ; u k + 6 = u k \begin{equation} u_k=S\Lambda^kS^{-1}SC_0=S\Lambda^kC_0;u_{k+6}=u_k \end{equation} uk=SΛkS1SC0=SΛkC0uk+6=uk
  • 小结:
    矩阵 u k u_k uk既不收敛,又不发散,会沿着周期为6的乘积结果不停转动。

8. 特殊矩阵

8.1 求投影到 A 3 A_3 A3列空间的投影矩阵P

假设有如下矩阵 A 4 A_4 A4,求投影到 A 3 A_3 A3列空间的投影矩阵P
A 4 = [ 0 1 0 0 1 0 2 0 0 2 0 3 0 0 3 0 ] = A 4 T ; A 3 = [ 0 1 0 1 0 2 0 2 0 ] = A 3 T ; \begin{equation} A_4=\begin{bmatrix} 0&1&0&0\\\\ 1&0&2&0\\\\ 0&2&0&3\\\\ 0&0&3&0 \end{bmatrix}=A^T_4; A_3=\begin{bmatrix} 0&1&0\\\\ 1&0&2\\\\ 0&2&0 \end{bmatrix}=A^T_3; \end{equation} A4= 0100102002030030 =A4T;A3= 010102020 =A3T;

  • A 3 A_3 A3的列空间中可以看出第1和第2列是不相关的。故可得
    A 3 ′ = [ 0 1 1 0 0 2 ] ; A 3 ′ T = [ 0 1 0 1 0 2 ] ; \begin{equation} A^{'}_3=\begin{bmatrix} 0&1\\\\ 1&0\\\\ 0&2 \end{bmatrix}; A^{'T}_3=\begin{bmatrix} 0&1&0\\\\ 1&0&2 \end{bmatrix}; \end{equation} A3= 010102 ;A3T= 011002 ;
  • 投影矩阵P可得如下:
    P = A 3 ′ ( A 3 ′ T A 3 ′ ) − 1 A 3 ′ T = [ 0.2 0 0.4 0 1 0 0.4 0 0.8 ] \begin{equation} P=A^{'}_3(A^{'T}_3A^{'}_3)^{-1} A^{'T}_3= \begin{bmatrix} 0.2&0&0.4\\\\ 0&1&0\\\\ 0.4&0&0.8 \end{bmatrix} \end{equation} P=A3(A3TA3)1A3T= 0.200.40100.400.8

8.2 求投影到 A 4 A_4 A4列空间的投影矩阵P

因为 A 4 A_4 A4的行列式为9,所以 A 4 A_4 A4的可逆, A 4 T A 4 A^T_4A_4 A4TA4可逆,投影公式P 如下:
P = A 4 ( A 4 T A 4 ) − 1 A 4 T = A 4 ( A 4 ) − 1 ( A 4 T ) − 1 A 4 T = I \begin{equation} P=A_4(A_4^TA_4)^{-1}A_4^T=A_4(A_4)^{-1}(A_4^T)^{-1}A_4^T=I \end{equation} P=A4(A4TA4)1A4T=A4(A4)1(A4T)1A4T=I
所以投影矩阵P为单位矩阵 I I I!!!!

  • 10
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值