吃瓜教程——datawhale10月组队学习

task02:概览西瓜书+南瓜书第3章

在这里插入图片描述

3.1 线性回归的基本形式

给定d个属性描述,可以通过属性线性组合来进行预测的函数
在这里插入图片描述

3.2 线性回归

3.2.1 一元线性线性回归
模型:线性模型
准则:均方误差最小
算法:最小二乘

假设x和y满足线性函数关系,使用x的值来预测y

在这里插入图片描述
这里,为了求出w和b,我们考虑衡量f(x)与y之间差别,使用均方误差来衡量,即让均方误差最小,为我们的优化准则。在这里插入图片描述
求解过程中使用最小二乘法,分别对w和b求导,再令导数为0,求出w和b的闭式解:
在这里插入图片描述
3.2.2 多元线性回归
模型:线性模型
准则:均方误差最小
算法:梯度下降法/最小二乘
参照一元线性回归,我们这里,属性为多个,此时x对应的系数就为多个,记为w的转置,模型为:
在这里插入图片描述

同样的优化的准则为均方误差最小:

在这里插入图片描述
闭式解解法:
在这里插入图片描述
根据最小二乘法
在这里插入图片描述

求出得到的
在这里插入图片描述
最终
在这里插入图片描述

3.3 一般广义线性模型

在这里插入图片描述

3.4 对数几率回归

模型:非线性模型()
准则:极大似然估计(类的取值概率乘积最大)
算法:梯度下降/牛顿法
在这里插入图片描述
在这里插入图片描述

3.5 线性判别分析(LDA)

在这里插入图片描述

模型:非线性
准则:类内协方差矩阵最小,类间向量均值最大
想要达到这个准则,即最大化目标,使用两者比值即可
在这里插入图片描述
推导过程:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

3.6 多分类学习

可由二分类推广到多分类:
三种拆分方式:
ovo,ovr,mvm
对于ovo和ovr来说:
在这里插入图片描述
mvm:
对N 个类别做M 次划分, 每次划分将一部分类别划为正类,一部
分划为反类,从而形成一个二分类训练集;这样一共产生M 个训练集,可训练出M 个分类器.
使用海明距离或者欧式距离,取距离最小的作为判定的距离:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值