向量组的秩(4)

极大线性无关组:

\alpha 1\alpha 2\alpha 3.....\alpha s的部分组\alpha 1\alpha 2

1)\alpha 1\alpha 2线性无关

2)每个向量均可由\alpha 1 ,\alpha 2线性表示 

\alpha 1\alpha 2是极大线性无关组

\binom{1}{0}\binom{2}{0}\binom{0}{5}\binom{0}{10}的极大线性无关组

\binom{1}{0}\binom{0}{5},也可以是\binom{1}{0}\binom{0}{10}等。

极大线性无关组的不唯一性。

任意两个极大线性无关组,含有的向量个数是相同的。

向量组的秩:极大线性无关组含向量的个数。

n+1个n维线性向量线性相关,所以向量组的秩取min{向量的个数,向量的维数}

如:

\binom{1}{2}\binom{0}{1}\binom{3}{0}这三个二维向量,任取两个是线性无关的,但是三个就是线性相关的

1*K1+0*K2+3*K3=0

2*K1+1*K2+0*K3=0

取K3=1,则K1=-3,K2=6,呈线性相关

0\leqr(\alpha 1\alpha 2\alpha 3.....\alpha s)\leqmin{向量的个数,向量的维数}

\alpha 1\alpha 2\alpha 3.....\alpha s 如果线性无关,则它的秩即是S,它本身。

1。如果\alpha 1\alpha 2\alpha 3.....\alpha s可由\beta1,\beta2。。。\betat表示,则它的秩

r(\alpha 1\alpha 2\alpha 3.....\alpha s)\leqr( 1,\beta2。。。\betat)

2。若两个向量组等价,则它的秩相等。

行秩与列秩

矩阵A\begin{pmatrix} 1 &1 &1 & 1 &1 &3 \\ 0&2 &1 &1 &5 &6 \\ 9&1 &0 & 0 &1 &1 \end{pmatrix}

\alpha 1=(1,1,1,1,1,3)

\alpha 2=(0,2,1,1,5,6)

\alpha 3=(9,1,0,0,1,1)

这三个向量为行向量组,行向量组的秩就叫行秩。

\beta 1=\begin{pmatrix} 1\\ 0\\ 9 \end{pmatrix},列向量组的秩就叫列秩。

行秩,因为最多只有三行,所以最大的秩是3,而列秩虽然有6组,但其是三维向量,所以其最大也是3。

得出定理:矩阵的行秩一定等于矩阵的列秩,并且等于矩阵的秩r(A).

\begin{pmatrix} 1 & 0 & 0 &0 \\ 0&1 &0 &0 \\ 0 & 0 & 0 & 0\\ 0& 0 & 0 & 0 \end{pmatrix}矩阵的秩 r(A)=2 (非零子式为2阶子式)

在矩阵中选取k行与k列,交叉点上的k^2个元素按原来位置组成的行列式称为一个k阶子式。若这个子式不等于0,就称为一个非零子式。

\begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix},\begin{pmatrix} 0\\ 1\\ 0\\ 0 \end{pmatrix},这两列能表示所有的列,列秩为2。

r(AB)\leqmin{r(A),R(B)}  A乘B的秩小于等于A的秩与B的秩的较小者。

例:

求矩阵A=\begin{pmatrix} 3 &3 &3 \\ 2&-1 &5 \\ -5& 3 &-13 \\ 4& -3 &11 \end{pmatrix}的行秩

\because行秩=列秩=r(A)

通过初等变换把它化成阶梯形

\begin{pmatrix} 1 &1 &1 \\ 0&-3 & 3\\ 0 &0 &0 \\ 0&0 &0 \end{pmatrix}  则它的行秩等于r(A)=2

初等行变换不改变列向量组的线性关系。

如:矩阵A=\begin{pmatrix} 1 &0 &5 \\ 0& 1 & 3\\ 0& 0 &0 \end{pmatrix}进行初等行变换后,

即第一行加到第三行,第二行加到第三行后的矩阵B

\begin{pmatrix} 1& 0 &5 \\ 0& 1 &3 \\ 1 &1 &8 \end{pmatrix}

\alpha 1=\begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix},\alpha 2=\begin{pmatrix} 0\\ 1\\ 0 \end{pmatrix},\alpha 3=\begin{pmatrix} 5\\ 3\\ 0 \end{pmatrix}

\alpha 1\alpha 2线性无关

\alpha 3=5\alpha 1+3\alpha 2

而进行过初等变换的列向量组也有同样的线性关系,

\beta 1=\begin{pmatrix} 1\\ 0\\ 1 \end{pmatrix} \beta 2=\begin{pmatrix} 0\\ 1\\ 1 \end{pmatrix}\beta 3 =\begin{pmatrix} 5\\ 3\\ 8 \end{pmatrix}

\beta 1\beta 2线性无关

\beta 3= 5\beta 1+3\beta 2

例:

1。不管原向量是行或列向量,均按列构成矩阵。

\begin{pmatrix} 1 &2 &-2 &3 \\ -2 &-4 &4 &-6 \\ 2 & 8 & -2 &0 \\ -1& 0 &3 &-6 \end{pmatrix}\Rightarrow只用初等行变换化成简化阶梯型

\begin{pmatrix} 1 &0 &-3 &6 \\ 0& 1 & 1/2 &-3/2 \\ 0 & 0 & 0 &0 \\ 0& 0 &0 &0 \end{pmatrix}首非零元所在的列做极大线性无关组

\beta 1=\begin{pmatrix} 1\\ 0\\ 0\\ 0 \end{pmatrix},\beta 2=\begin{pmatrix} 0\\ 1\\ 0\\ 0 \end{pmatrix}为极大线性无关组。其系数直接写出来 就可以了。

\beta 3=-3\beta 1+1/2\beta 2

\beta 4=6\beta 1-3/2\beta 2

因为初等行变换不改变列向量组的线性关系。所以

\alpha 1\alpha 2是极大线性无关组

\alpha 3=-3\alpha 1+1/2\alpha 2

\alpha 4=6\alpha 1-3/2\alpha 2 

例 :

如下矩阵看上去已经化成简化矩阵但是其实还需化简,

首非零元素所在的列的其余元素为0

\begin{pmatrix} 1 &1 &2 &1 \\ 0 &1 & 0 & 1\\ 0 & 0& 0& 0 \end{pmatrix}

需第二行减去第一行化成

\begin{pmatrix} 1 &0 &2 &0 \\ 0 &1 &0 &1 \\ 0 & 0 &0 &0 \end{pmatrix}这样得出的线性关系才是准备的

  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值