题目地址:POJ 1988
这道题的查找合并的方法都能想的到,就是一点没想到,我一直天真的以为查询的时候,输入后能马上输出,这样的话在合并的时候就要所有的结点值都要算出来,但是经过路径压缩之后,没办法全部都处理到,如果不压缩妥妥的TLE。。于是看了看网上的题解。才发现自己是多么的天真(ben,四声)。。在查询的时候只要找一次跟就可以了。。这样不需查询的也就没必要处理出来。反而更省时。
这题的基本思路是很好想的。另开两个数组,一个记录以此节点为根的子节点的数目(这样合并的时候只需要加另一个根的数目就行了),另一个用来记录这个结点下面的点的数目,即需要输出的答案。然后分别在查找和合并的时候进行维护就可以了。
代码如下:
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>
using namespace std;
int bin[31000], rank[31000], num[31000];
int find1(int x)
{
int y;
if(bin[x]!=x)
{
y=bin[x];
bin[x]=find1(bin[x]);
rank[x]+=rank[y];
}
return bin[x];
}
void join(int x, int y)
{
int f1=find1(x);
int f2=find1(y);
if(f1!=f2)
{
bin[f1]=f2;
rank[f1]+=num[f2];
num[f2]+=num[f1];
}
}
int main()
{
int n, a, b, i, f1, f2;
char c;
scanf("%d",&n);
for(i=1;i<=30000;i++)
{
bin[i]=i;
rank[i]=0;
num[i]=1;
}
while(n--)
{
getchar();
scanf("%c",&c);
if(c=='M')
{
scanf("%d%d",&a,&b);
join(a,b);
}
else
{
scanf("%d",&a);
find1(a);
printf("%d\n",rank[a]);
}
}
return 0;
}