题目地址:HDU 3976
分别对n个结点建立n个未知数。
下面这段来自kuangbin博客,传送门http://www.cnblogs.com/kuangbin/p/3428573.html
就根据n个点,流入电流等于流出电流,或者说每个点电流之和(假如流入为正,流出为负,反之也可)
这样可以列出n个方程,根据n个点电流和为0.
而且可以假设1这个点流入电流为-1, 这样设点电势为0,那么可以知道n这个点的电势就等于等效电阻了、。
流入肯定等于流出的,上面列的方程组中第n个的是多余的,可以去掉,替换成1点电压为0.
这样方程组正确建立。对于u ----> v 电阻为w. 可以知道u加一个电流 xv/w - xu/w. 而v加一个电流 xu/w - xv/w;
代码如下:
#include <iostream>
#include <string.h>
#include <math.h>
#include <queue>
#include <algorithm>
#include <stdlib.h>
#include <map>
#include <set>
#include <stdio.h>
using namespace std;
#define LL __int64
#define pi acos(-1.0)
const int mod=1e9+7;
const int INF=1e9;
const double eqs=1e-9;
double mat[60][60], x[60];
int equ, var;
void gauss()
{
int i, j, k, h, max_r;
for(i=0,j=0;i<equ&&j<var;i++,j++){
max_r=i;
for(k=i+1;k<equ;k++){
if(fabs(mat[k][j])>fabs(mat[max_r][j])) max_r=k;
}
if(fabs(mat[max_r][j])<eqs) return ;
if(max_r!=i){
for(k=j;k<var;k++){
swap(mat[i][k],mat[max_r][k]);
}
swap(x[i],x[max_r]);
}
x[i]/=mat[i][j];
for(k=j+1;k<var;k++) mat[i][k]/=mat[i][j];
mat[i][j]=1;
for(k=0;k<equ;k++){
if(i!=k){
x[k]-=x[i]*mat[k][i];
for(h=j+1;h<var;h++){
mat[k][h]-=mat[i][h]*mat[k][j];
}
mat[k][j]=0;
}
}
}
}
int main()
{
int t, n, m, i, j, u, v, w, Case=0;
scanf("%d",&t);
while(t--){
Case++;
scanf("%d%d",&n,&m);
equ=var=n;
memset(mat,0,sizeof(mat));
while(m--){
scanf("%d%d%d",&u,&v,&w);
mat[u-1][u-1]-=1.0/w;
mat[u-1][v-1]+=1.0/w;
mat[v-1][u-1]+=1.0/w;
mat[v-1][v-1]-=1.0/w;
}
x[0]=1;
for(i=1;i<n;i++){
x[i]=0;
}
for(i=1;i<n;i++){
mat[n-1][i]=0;
}
mat[n-1][0]=1;
gauss();
printf("Case #%d: %.2f\n",Case,x[n-1]);
}
return 0;
}