题目地址:HDU 1878
这个题要注意欧拉回路与欧拉通路的区别。在都保证连通性的前提下,欧拉回路要求每个点的度数都是偶数,而欧拉通路允许两个点的度数是奇数。所以这题用并查集判断连通性后判断下度数就可以了。
代码如下:
#include <iostream>
#include <string.h>
#include <math.h>
#include <queue>
#include <algorithm>
#include <stdlib.h>
#include <map>
#include <set>
#include <stdio.h>
using namespace std;
#define LL long long
#define pi acos(-1.0)
const int mod=1e9+7;
const int INF=0x3f3f3f3f;
const double eqs=1e-9;
const int MAXN=1000+10;
int bin[MAXN], degree[MAXN];
int find1(int x)
{
return bin[x]==x?x:bin[x]=find1(bin[x]);
}
int main()
{
int n, m, i, j, f1, f2, u, v, cnt;
bool flag;
while(scanf("%d",&n)!=EOF&&n){
scanf("%d",&m);
for(i=1;i<=n;i++){
bin[i]=i;
}
flag=0;
memset(degree,0,sizeof(degree));
while(m--){
scanf("%d%d",&u,&v);
degree[u]++;
degree[v]++;
f1=find1(bin[u]);
f2=find1(bin[v]);
if(f1!=f2) bin[f2]=f1;
}
cnt=0;
int x=find1(bin[1]);
for(i=1;i<=n;i++){
if((degree[i]&1)||(i>1&&find1(bin[i])!=x)){
flag=1;
break;
}
}
if(flag||cnt>2) puts("0");
else puts("1");
}
return 0;
}