AI 产业三大发展趋势(AutoML/MLOps/XAI)将加速企业 AI 应用落地

随着AI技术的发展,企业正从探索期转向构建和输出阶段。AutoML简化了机器学习模型的开发,如NeuralNetworkIntelligence和Autokeras等开源工具。MLOps通过ClearML和MLFlow等工具标准化ML开发运维流程。XAI项目如InterpretML和SHAP增强了模型的可解释性和透明度。这些趋势和解决方案正在加速AI的普及并提升企业应用效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

AI 人工智能高速发展数十年后的现在,企业对于发展 AI 应用的进程,从探索期接续进入构建、扩展及输出的阶段。

image.png

近期 AI 产业的三大发展趋势:AutoML(自动机器学习)、MLOps(机器学习的开发及运维)及 XAI(可解释性的AI)等解决方案,将加快企业发展智慧化应用的脚步。

AutoML

AutoML 解决了过去ML训练及建构模型费时的问题,也缓解AI人才不足困境,几乎 ML 开发过程中的每一重复性环节,都能利用 AutoML 技术来简化,进而缩短上线到生产的时间。

一些活跃的开源项目

  • Neural Network Intelligence (star: 11k):用于自动化机器学习生命周期的开源 AutoML 工具包,包括特征工程、神经架构搜索、模型压缩和超参数调优。
  • Autokeras (star: 8.4k):基于 Keras 的 AutoML 系统。 AutoKeras 的愿景是让每个人都可以使用机器学习。
  • Katib (star: 1.2k):Katib 是一个用于自动机器学习 (AutoML) 的 Kubernetes 原生项目。 Katib 支持超参数调优、提前停止和神经架构搜索。
  • mljar-supervised (star: 1.9k):在表格数据上进行 AutoML 的 Python 包,具有特征工程、超参数调优、模型解释和自动文档等功能。

MLOps

而随着 AI 成果的日益扩展,企业开始陆续引入 MLOps 方案,来将 ML 开发与运维流程标准化,促使开发成果规模化,将有助企业建构 AI 软件文化,同时提升发展 AI 应用成效。

一些活跃的开源项目

  • ClearML (star: 3.1k):通过自动 CI/CD 来简化您的 ML 工作流程。 包括实验管理,MLOps 和数据管理。
  • MLFlow (star: 11.7k):一个简化机器学习开发的平台,包括跟踪实验、将代码打包为能够可复现的运行以及共享和部署模型。
  • Polyaxon (star: 3.1k):使用生产级 MLOps 工具重现模型实验、自动化和扩展您的数据科学工作流。
  • Hopsworks (star: 0.7k):Hopsworks 及其特征平台(Feature Store)是一个开源数据密集型 AI 平台,用于大规模开发和操作机器学习模型。

XAI

最后,在进入输出AI应用的阶段,XAI解决方案有助于确保AI应用决策建议的合理性;同时,提高模型的透明度和可追溯性,在建立AI应用的可信度之际,并持续优化ML模型,有利于推助企业发展新商业模式。预期XAI将成为AI技术普及的关键之一。

一些活跃的开源项目

  • InterpretML :拟合可解释的模型,解释黑盒机器学习。
  • alibi (star: 1.6k):一个针对机器学习模型检查和解释的开源 Python 库。该库的重点是为分类和回归模型提供黑盒、白盒、局部和全局解释方法的高质量实现。
  • Fairlearn (star: 1.2k):用于评估和提高机器学习模型公平性的 Python 包。
  • SHAP (star: 16k):一种博弈论方法来解释任何机器学习模型的输出。
  • Netron (star: 18k):用于神经网络、深度学习和机器学习模型的可视化工具。

总结

本文谈论了这几年企业已由发展AI应用的探索期,陆续进入构建 AI 所需的资源、扩展及输出AI应用等阶段。AI技术发展日新月异,促使AI产业化的趋势方兴未艾,不过企业发展AI应用仍面临各阶段挑战,随着AI产业持续优化,透过AutoML、MLOps及XAI等解决方案,分别改善 ML(机器学习)模型繁琐开发过程、ML 开发及运维团队协作效率,与 ML 模型缺乏可信度等企业发展AI应用时所面临的困境,这将推动 AI 技术的加速普及。同时,本文提供了一些活跃的开源项目供大家参考。

image.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

吃果冻不吐果冻皮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值