model solve time 与 model solve time-total的区别

model solve time 指的是本次运行的总时间,相当于指定model cycle多少次?

model solve total-time 指的是项目model new开始计算的时间,例如,除本次运行外,之前进行model cycle或者model solve time进行的计算都会包含在内。

二者的用处(用在什么地方的区别)还不是很清楚,往后可以再研究,目前用的model solve time比较多

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论
C语言是一种广泛使用的编程语言,它具有高效、灵活、可移植性强等特点,被广泛应用于操作系统、嵌入式系统、数据库、编译器等领域的开发。C语言的基本语法包括变量、数据类型、运算符、控制结构(如if语句、循环语句等)、函数、指针等。在编写C程序时,需要注意变量的声明和定义、指针的使用、内存的分配与释放等问题。C语言常用的数据结构包括: 1. 数组:一种存储同类型数据的结构,可以进行索引访问和修改。 2. 链表:一种存储不同类型数据的结构,每个节点包含数据和指向下一个节点的指针。 3. 栈:一种后进先出(LIFO)的数据结构,可以通过压入(push)和弹出(pop)操作进行数据的存储和取出。 4. 队列:一种先进先出(FIFO)的数据结构,可以通过入队(enqueue)和出队(dequeue)操作进行数据的存储和取出。 5. 树:一种存储具有父子关系的数据结构,可以通过序遍历、前序遍历和后序遍历等方式进行数据的访问和修改。 6. 图:一种存储具有节点和边关系的数据结构,可以通过广度优先搜索、深度优先搜索等方式进行数据的访问和修改。 这些数据结构在C语言都有相应的实现方式,可以应用于各种不同的场景。C语言的各种数据结构都有其优缺点,下面列举一些常见的数据结构的优缺点: 数组: 优点:访问和修改元素的速度非常快,适用于需要频繁读取和修改数据的场合。 缺点:数组的长度是固定的,不适合存储大小不固定的动态数据,另外数组在内存是连续分配的,当数组较大时可能会导致内存碎片化。 链表: 优点:可以方便地插入和删除元素,适用于需要频繁插入和删除数据的场合。 缺点:访问和修改元素的速度相对较慢,因为需要遍历链表找到指定的节点。 栈: 优点:后进先出(LIFO)的特性使得栈在处理递归和括号匹配等问题时非常方便。 缺点:栈的空间有限,当数据量较大时可能会导致栈溢出。 队列: 优点:先进先出(FIFO)的特性使得
需求预测和分仓规划是一个很常见的问题,一般需要使用时间序列分析和优化算法来解决。以下是一个简单的Python代码示例,可以帮助你对需求进行预测和进行分仓规划。 首先,我们需要导入一些必要的库: ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt from statsmodels.tsa.arima_model import ARIMA from sklearn.metrics import mean_squared_error import pulp ``` 接下来是数据预处理部分。我们需要读取销售数据和库存数据,并将它们合并成一个数据框: ```python sales_data = pd.read_csv('sales_data.csv') inventory_data = pd.read_csv('inventory_data.csv') df = pd.merge(sales_data, inventory_data, on='date') df['date'] = pd.to_datetime(df['date']) df.set_index('date', inplace=True) ``` 接下来是时间序列分析部分。我们可以使用ARIMA模型来预测销售量: ```python def arima_model(series): model = ARIMA(series, order=(3,1,0)) model_fit = model.fit(disp=0) return model_fit.forecast()[0] sales_prediction = [] for i in range(len(df)): if i < 7: sales_prediction.append(np.nan) else: sales_prediction.append(arima_model(df['sales'][i-7:i])) df['sales_prediction'] = sales_prediction plt.plot(df['sales']) plt.plot(df['sales_prediction']) plt.show() ``` 然后,我们可以使用线性规划来进行分仓规划。我们可以使用pulp库来构建和求解线性规划问题: ```python def optimize_warehouses(num_warehouses, max_capacity): prob = pulp.LpProblem("Warehouse Planning", pulp.LpMinimize) inventory_vars = [] for i in range(num_warehouses): inventory_vars.append(pulp.LpVariable(f"inventory_{i}", lowBound=0, upBound=max_capacity)) total_cost = 0 for i in range(len(df)): demand = df['sales_prediction'][i] if np.isnan(demand): continue shortfall = [] for j in range(num_warehouses): shortfall.append(demand - inventory_vars[j]) prob += pulp.lpSum(shortfall) == 0 total_cost += pulp.lpSum([inventory_vars[j] for j in range(num_warehouses)]) * 0.01 prob += total_cost prob.solve() inventory_levels = [] for v in prob.variables(): inventory_levels.append(v.varValue) return inventory_levels ``` 最后,我们可以调用optimize_warehouses函数来进行分仓规划,并将结果保存到一个新的数据框: ```python inventory_levels = optimize_warehouses(num_warehouses=3, max_capacity=1000) df['inventory_level'] = inventory_levels plt.plot(df['inventory_level']) plt.show() ``` 这是一个简单的示例,你可以根据自己的需求进行修改和扩展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

scouttttt

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值