Power BI与Python数据分析全流程中怎么搭配

本文介绍如何在PowerBI中使用Python进行数据获取、清理和可视化,包括配置Python环境、利用Python脚本处理数据及构建图表,展示了两种工具联合使用的强大能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

使用Power BI进行数据分析,洞察商业逻辑时,可以搭配Python这个强大的工具,在数据获取、数据清理、数据可视化的全流程中,变得更加灵活、强大。下面具体介绍下这几个方面,Power BI与Python是怎么样进行联合的。

一、数据获取

在“获取数据”功能中,选择“其他-Python脚本”

填写Python导入的脚本

import numpy as np

import pandas as pd

df = pd.DataFrame({

    'Fname':['Harry','Sally','Paul','Abe','June','Mike','Tom'],

    'Age':[21,34,42,18,24,80,22],

    'Weight': [180, 130, 200, 140, 176, 142, 210],

    'Gender':['M','F','M','M','F','M','M'],

    'State':['Washington','Oregon','California','Washington','Nevada','Texas','Nevada'],

    'Children':[4,1,2,3,0,np.nan,np.nan],

    'Pets':[3,2,2,5,0,1,5]

})

print (df)

导入数据成功

二、数据清理

使用Python进一步进行数据处理,数据清洗可以更加强大。

打开PowerBI的查询编辑器

运行python脚本,对Children列的两个缺失值进行补全。

# 'dataset' 保留此脚本的输入数据

#import pandas as pd

completedData = dataset['Children'].fillna(0).astype(int)

dataset['Children'] =  completedData

通过高级编辑器查看M语言,M语言通过Python.Execute函数执行python脚本。

三、数据可视化

构建年龄、体重关系的散点图

选择Python视觉对象->加入Age、Weight字段到值中->编辑python代码

import matplotlib.pyplot as plt

dataset.plot(kind='scatter', x='Age', y='Weight', color='red')

plt.show() 

类似操作,再创建个折现图

import matplotlib.pyplot as plt

ax = plt.gca()

dataset.plot(kind='line',x='Fname',y='Children',ax=ax)

dataset.plot(kind='line',x='Fname',y='Pets', color='red', ax=ax)

plt.show() 

四、总结

(1)需要在Power BI中先配置好python的主目录,python环境安装好numpy、pandas、matplotlib模块。具体可参见文章:

Power BI中配置Python运行环境,及相关错误问题解决https://blog.csdn.net/scut_yfli/article/details/104877044

(2)Python BI与Python之间的数据传递以DataFrame格式进行。Python的处理结果以Dataframe形式输出,Power Query M语言会自动将Dataframe转换为Table格式。

(3)利用python脚本强大的工具库、修改脚本的灵活性,使得整儿Power BI处理更加强大。

(4)python视觉对象的一些限制:

  • 数据大小限制。 Python 视觉对象用于绘制的数据仅限 150,000 行。 如果选择了 150,000 行以上,则只会使用前 150,000 行,且在图像上显示一条消息。 此外,输入数据的限制为 250 MB。
  • 分辨率。 所有 Python 视觉对象均以 72 DPI 显示。
  • 计算时间限制。 如果 Python 视觉对象计算时间超过 5 分钟,则执行将超时并生成一个错误。

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灰哥数据智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值