题目:http://www.gdfzoj.com/oj/contest/270/problems/5
司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队。一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示),也可能是平原(用"P"表示),如下图。在每一格平原地形上最多可以布置一支炮兵部队(山地上不能够部署炮兵部队);一支炮兵部队在地图上的攻击范围如图中黑色区域所示:
如果在地图中的灰色所标识的平原上部署一支炮兵部队,则图中的黑色的网格表示它能够攻击到的区域:沿横向左右各两格,沿纵向上下各两格。图上其它白色网格均攻击不到。从图上可见炮兵的攻击范围不受地形的影响。
现在,将军们规划如何部署炮兵部队,在防止误伤的前提下(保证任何两支炮兵部队之间不能互相攻击,即任何一支炮兵部队都不在其他支炮兵部队的攻击范围内),在整个地图区域内最多能够摆放多少我军的炮兵部队。
Input
第一行包含两个由空格分割开的正整数,分别表示N和M;
接下来的N行,每一行含有连续的M个字符('P'或者'H'),中间没有空格。按顺序表示地图中每一行的数据。
对于50%的数据,1<=m<=5
对于100%的数据,1<=n<=100,1<=m<=10
Output
仅一行,包含一个整数K,表示最多能摆放的炮兵部队的数量。
Sample Input
5 4
PHPP
PPHH
PPPP
PHPP
PHHP
Sample Output
6
很典型的状压
注意这里炮攻击范围是2,所以要用三维记录
f[i,j,k]:第i行,状态为j,i-1行状态为k可以摆放炮兵个数的最大值
注意:
面对很长的程序,写完后建议一行一行di检查(出错也是)
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int a[105],s[(1<<10)+5],f[105][65][65],num[(1<<10)+5];
int n,m,tmp=0;
void dfs(int s1,int pos,int tot)
{
if (pos>m)
{
tmp++;
s[tmp]=s1;
num[tmp]=tot;
return ;
}
dfs(s1,pos+1,tot);
dfs(s1+(1<<(pos-1)),pos+3,tot+1);
}
int main()
{
int i,j,k,l;
char c[15];
// freopen("a.txt","r",stdin);
scanf("%d%d",&n,&m);
for (i=1;i<=n;i++)
{
scanf("%s",&c);
for (j=0;j<m;j++)
if (c[j]=='H')
a[i]+=(1<<j);
}
dfs(0,1,0);
for (i=1;i<=tmp;i++)//第一行
{
if ((s[i]&a[1])>0)
continue;
// for (j=1;j<=tmp;j++)
f[1][i][1]=num[i];
}
for (i=1;i<=tmp;i++)//第二行
{
if ((s[i]&a[2])>0)
continue;
for (j=1;j<=tmp;j++)
{
if ((s[i]&s[j])>0 || (s[j]&a[1])>0)
continue;
f[2][i][j]=max(f[2][i][j],f[1][j][1]+num[i]);
}
}
for (i=3;i<=n;i++)//行数
{
for (j=1;j<=tmp;j++)//第i行
{
if ((s[j]&a[i])>0)
continue;
for (k=1;k<=tmp;k++)//第i-1行
{
if ((s[j]&s[k])>0 || (s[k]&a[i-1])>0)
continue;
for (l=1;l<=tmp;l++)//第i-2行
{
if ((s[l]&s[k])>0 || (s[l]&s[j])>0 || (s[l]&a[i-2])>0)
continue;
f[i][j][k]=max(f[i][j][k],f[i-1][k][l]+num[j]);
}
}
}
}
int ans=0;
for (i=1;i<=tmp;i++)
for (j=1;j<=tmp;j++)
ans=max(ans,f[n][i][j]);
printf("%d\n",ans);
return 0;
}