天池龙珠训练营逻辑回归学习笔记

1、知识点

“线性回归”试图学得一个线性模型以尽可能准确地预测实值输出标记。线性回归模型一般可简写为
y = w T x + b y = w^{T}x + b y=wTx+b更一般地,考虑单调可微函数g,有
y = g − 1 ( w T x + b ) y = g^{-1}(w^{T}x + b) y=g1(wTx+b)这样得到的模型称为“广义线性模型”,函数g为“联系函数”。

上述模型都是在进行回归学习,如果要做分类任务,那么就需要一个函数g将分类任务的真实标签y与线性回归模型的预测值联系起来。考虑二分类任务,这个函数g最理想的应当是“单位阶跃函数”
y = { 0 , z < 0 0.5 , z = 0 1 , z > 0 y = \left\{\begin{matrix} 0, & z<0 \\ 0.5, & z=0\\ 1,&z>0 \end{matrix}\right. y=0,0.5,1,z<0z=0z>0其中z就是回归的预测值。
但是,单位阶跃函数不连续,所以我们必须找到一个近似单位阶跃函数,并且单调可微的函数。于是对数几率函数作为了替代函数。其表示如下
y = 1 1 + e − z y = \frac{1}{1+e^{-z}} y=1+ez1它是一种“Sigmoid函数”,即形似s的函数,它可将预测值z转化为接近0或者1的y值。

强调!!!名字虽然是“回归”,但是这是一种分类学习算法!!!!!

2、学习内容

逻辑回归如何学习参数以及相关的机器学习实战代码可以参考本人的另外一个文章(逻辑回归)。接下来借助sklearn库进行基于鸢尾花(iris)数据集的逻辑回归分类实践。

该数据集一共包含5个变量,其中4个特征变量,1个目标分类变量。共有150个样本,目标变量为 花的类别 其都属于鸢尾属下的三个亚属,分别是山鸢尾 (Iris-setosa),变色鸢尾(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。包含的三种鸢尾花的四个特征,分别是花萼长度(cm)、花萼宽度(cm)、花瓣长度(cm)、花瓣宽度(cm),这些形态特征在过去被用来识别物种。

2.1 导入基本库

import numpy as np 
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from mpl_toolkits.mplot3d import Axes3D
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn import metrics

2.2 数据的载入及简要分析

我们利用 sklearn 中自带的 iris 数据作为数据载入,并利用Pandas转化为DataFrame格式。

data = load_iris() #得到数据特征
iris_target = data.target #得到数据对应的标签
iris_features = pd.DataFrame(data=data.data, columns=data.feature_names) #利用Pandas转化为DataFrame格式

接下来,可以对数据以及标签等情况进行简要的查看。

## 利用.info()查看数据的整体信息
iris_features.info()
## 进行简单的数据查看,我们可以利用 .head() 头部.tail()尾部
iris_features.head()
iris_features.tail()
## 其对应的类别标签为,其中0,1,2分别代表'setosa', 'versicolor', 'virginica'三种不同花的类别。
iris_target
## 利用value_counts函数查看每个类别数量,可以发现这是个平衡数据集
pd.Series(iris_target).value_counts()
## 对于特征进行一些统计描述(均值,方差等)
iris_features.describe()

2.3 可视化描述

## 合并标签和特征信息
iris_all = iris_features.copy() ##进行浅拷贝,防止对于原始数据的修改
iris_all['target'] = iris_target
## 特征与标签组合的散点可视化
sns.pairplot(data=iris_all,diag_kind='hist', hue= 'target')
plt.show()


从图中可以看出不同的特征组合对于不同类别的花的散点分布,以及大概的区分能力。
我们还可以从三维散点图去观察数据分布情况。

# 选取其前三个特征绘制三维散点图
fig = plt.figure(figsize=(10,8))
ax = fig.add_subplot(111, projection='3d')

iris_all_class0 = iris_all[iris_all['target']==0].values
iris_all_class1 = iris_all[iris_all['target']==1].values
iris_all_class2 = iris_all[iris_all['target']==2].values
# 'setosa'(0), 'versicolor'(1), 'virginica'(2)
ax.scatter(iris_all_class0[:,0], iris_all_class0[:,1], iris_all_class0[:,2],label='setosa')
ax.scatter(iris_all_class1[:,0], iris_all_class1[:,1], iris_all_class1[:,2],label='versicolor')
ax.scatter(iris_all_class2[:,0], iris_all_class2[:,1], iris_all_class2[:,2],label='virginica')
plt.legend()

plt.show()

2.4 逻辑回归实现二分类

这里我们只选出两种类型的样本进行试验分析。逻辑回归模型的参数介绍可参考LogisticRegression参数

## 选择其类别为0和1的样本 (不包括类别为2的样本)
iris_features_part = iris_features.iloc[:100]
iris_target_part = iris_target[:100]

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features_part, iris_target_part, test_size = 0.2, random_state = 2020)

## 定义 逻辑回归模型 
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)

## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()


从混沌图结果来看,此次试验分类结果做到了100%正确。

2.5 逻辑回归实现三分类

由于这里的逻辑回归已经是定义好的一个函数,所以如何具体实现多分类并不是太清楚。作为了解可以查看逻辑回归实现多分类。其实不止逻辑回归,常见的支持向量机实现多分类也基本如此。

## 测试集大小为20%, 80%/20%分
x_train, x_test, y_train, y_test = train_test_split(iris_features, iris_target, test_size = 0.2, random_state = 2020)
## 定义 逻辑回归模型 
clf = LogisticRegression(random_state=0, solver='lbfgs')
# 在训练集上训练逻辑回归模型
clf.fit(x_train, y_train)

## 在训练集和测试集上分布利用训练好的模型进行预测
train_predict = clf.predict(x_train)
test_predict = clf.predict(x_test)

## 由于逻辑回归模型是概率预测模型(前文介绍的 p = p(y=1|x,\theta)),所有我们可以利用 predict_proba 函数预测其概率
train_predict_proba = clf.predict_proba(x_train)
test_predict_proba = clf.predict_proba(x_test)

print('The test predict Probability of each class:\n',test_predict_proba)
## 其中第一列代表预测为0类的概率,第二列代表预测为1类的概率,第三列代表预测为2类的概率。

## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_train,train_predict))
print('The accuracy of the Logistic Regression is:',metrics.accuracy_score(y_test,test_predict))

## 查看混淆矩阵
confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)
print('The confusion matrix result:\n',confusion_matrix_result)

# 利用热力图对于结果进行可视化
plt.figure(figsize=(8, 6))
sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')
plt.xlabel('Predicted labels')
plt.ylabel('True labels')
plt.show()


三分类的结果的预测准确度上有所下降,其在测试集上的准确度为: 86.67%,这是由于’versicolor’和 'virginica’这两个类别的特征,我们从可视化的时候也可以发现,其特征的边界具有一定的模糊性(边界类别混杂,没有明显区分边界,所有在这两类的预测上出现了一定的错误。

3、 学习问题

对于逻辑回归的多分类,模型参数的定义与二分类时完全一致。这里一开始让人有些疑惑,后来通过查询模型参数的介绍,找到了模型在面对不同分类任务时是如何进行调整的,疑惑最终得到解决。

4、学习思考

即使是针对比较简单的逻辑回归模型,如果想要灵活的运用它,就需要对其有着足够的认识,这就包括了对其原理尤其是其公式推导有着一定了解。同时,在调用该模型前,对该模型的参数进行足够的了解,有助于在使用时知道如何调整。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小五design

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值