POJ1679 The Unique MST

10 篇文章 0 订阅
3 篇文章 0 订阅

题目

POJ1679 The Unique MST

分析

题目大意:

求一张图的最小生成树是否唯一,唯一则输出价值,否则输出“Not Unique!”。

思路1:

求一棵最小生成树,再求一棵次小生成树。两者价值相等则不唯一。

思路2:

先求一棵最小生成树。依次枚举树里面每一条边,让它不能被使用,新构建一棵生成树。如果不含此边的生成树(即新求出的这棵)也最小,说明不唯一。
思路2的详细解释在代码部分。

代码

此处为思路2,用kruskal实现。
代码中kruskal函数的参数表示的是不能使用的边的编号。
一开始先求出最小生成树,在函数中特判第一次调用,使其返回求出的价值,并标记生成树中的边。
枚举每一条边,标记它为被删除(即调用一次函数)。如果成功求出(删去此边后依然能生成一棵树),判断是否与最小价值相等。
一旦求出一棵价值也最小的生成树,直接判定为不唯一。否则继续枚举、删边、生成树。
值得注意的是,不要忘记每次跑kruskal时reset并查集的father数组。

#include<cstdio>
#include<algorithm>
#include<iostream>
using namespace std;
const int maxn=102;
struct Edge{
    int from,to,v;
    bool tree;
}e[maxn*maxn];
int fa[maxn];
int T,n,m,ans,cnt;
bool cmp(Edge A,Edge B)
{
    return A.v<B.v; 
}
void add(int u,int v,int w)
{
    e[++cnt].to=v;
    e[cnt].from=u;
    e[cnt].v=w;
    e[cnt].tree=false;
}

int Find(int x)
{
    if(fa[x]==x)    return x;
    return fa[x]=Find(fa[x]);
}
int kruskal(int k)
{
    for(int i=1;i<=n;i++)   fa[i]=i;
    int now=0,sum=0;
    for(int i=1;i<=cnt;i++)
        if(i!=k)
        {
            int u=e[i].from,v=e[i].to;
            int p=Find(u),q=Find(v);
            if(p!=q)
            {
                fa[q]=p;
                sum+=e[i].v;
                now++;
                if(!k)  e[i].tree=1;
            }
            if(now==n-1)    break;
        }
    if(!k)                  return sum;
    if(now==n-1&&sum==ans)  return 1;
    else                    return 0;
}

int main()
{
    scanf("%d",&T);
    while(T--)
    {
        cnt=0;
        scanf("%d%d",&n,&m);
        for(int i=1,x,y,z;i<=m;i++)
        {
            scanf("%d%d%d",&x,&y,&z);
            add(x,y,z);
        }
        sort(e+1,e+cnt+1,cmp);
        ans=kruskal(0);
        bool flag=0;
        for(int i=1;i<=cnt;i++)
            if(e[i].tree)
            {
                int t=kruskal(i);
                if(t==1)
                {
                    printf("Not Unique!\n");
                    flag=1;
                    break;
                }
            }   
        if(!flag)   printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值