DeepSeek + Power BI 带来个人ABI革命

大家都知道,ChatGPT 并不是人人能用,Copilot 也有很高的门槛,而现在火爆的 DeepSeek 让人人都可以使用,并获得几乎等价于最先进 AI 的能力。这对 Power BI 的个人分析师意味着什么呢?

184f9631b342e0293feeb76a52793dfa.jpeg

在 2025 年开年上班第一日,本文将为大家一起展望我们可以从其中得到的收益。

技术门槛的彻底消解:从“代码恐惧”到自然语言交互

864933864ad6e0d77ea8adfad91b9f18.png

DeepSeek 说:

传统Power BI用户需掌握DAX公式、M语言、数据建模等专业技能,而DeepSeek通过自然语言交互可直接生成代码、优化查询逻辑,甚至解释复杂公式的运行原理。例如,用户可输入“帮我用DAX计算过去12个月的滚动销售额”,DeepSeek不仅能生成公式CALCULATE(SUM(Sales[Amount]), DATESINPERIOD('Date'[Date], LASTDATE('Date'[Date]), -12, MONTH)),还能通过多轮对话调整时间粒度或添加筛选条件。这种“对话式开发”将数据分析从编程语言中解放出来,使非技术背景的用户也能快速实现高阶分析需求。

BI佐罗补充:

如果还是写不出公式,主要是对 DeepSeek 的用法还不熟悉。

分析流程的重构:从线性操作到动态迭代

DeepSeek 说:

DeepSeek与Power BI的TMDL(纯文本建模语言)结合后,用户可通过文本指令直接修改数据模型关系、调整度量值逻辑或重建可视化规则。例如,用户可要求DeepSeek“将销售区域从4个合并为2个大区,并重新计算区域贡献率”,系统会自动解析TMDL文件,生成修改后的模型版本,并提示潜在的数据一致性风险。这种动态迭代能力使个人用户的分析流程从“设计-执行-验证”的线性模式,转变为“实时探索-反馈优化”的闭环,极大提升了试错效率。

e4fe63f28b73b7e798a9d2ebad64a28e.png

BI佐罗补充:

这点几乎是颠覆式的,也将在这个特性下,全面碾压不支持文本化的其他 BI 工具,大家要理解:Power BI 中,包括 Power Query,DAX,数据模型,表,关系,按列排序,格式,类型 等所有信息,都可以直接以 TMDL 的纯文本表示,我们将这个文本给到 DeepSeek,它就相当于瞬间知道了:你的所有的表的结构和基础的信息,它就可以根据你的指令在里面构建符合规则的度量值。

如果觉得不够复杂,可以再让它创建一个 30 日移动平均销售额,得到:

b07d13c4fbff4220f2c7a963677c4895.png

整个过程都是自动化的。

知识壁垒的突破:跨领域分析的平民化

e0ee1e88797020c96e732d211797531f.png

DeepSeek 说:

传统数据分析受限于个人专业知识储备,而DeepSeek的领域知识库(如医疗、金融、供应链等)可通过Power BI直接赋能个人用户。例如,一位教育行业从业者分析学生行为数据时,可要求DeepSeek“结合心理学模型识别高风险辍学群体”,系统会调用认知行为理论框架,自动生成特征筛选规则和干预建议,并将结果嵌入Power BI仪表盘。这种“领域专家即服务”模式,使个人用户无需依赖外部顾问即可完成专业级分析。

BI佐罗补充:

当然,要实现这个,还涉及到 Power BI 的可视化层的文本化,这个也是支持的。当然,个人在使用 Power BI 方面最大的好处是:不再需要教程了。DeepSeek 就是最好的教程,它可以根据你的需要帮你定制需要的学习。

创意生产力的爆发:从标准化报告到认知增强

DeepSeek 说:

DeepSeek的生成能力与Power BI可视化引擎结合,可突破传统BI工具的报表范式。用户可通过指令如“用隐喻式可视化对比各产品线的市场渗透率”,DeepSeek会生成包含气泡图(隐喻市场覆盖范围)、流向图(隐喻用户迁移路径)等创新图表组合。更进阶的应用中,用户可要求系统“模拟三种不同经济政策对销售预测的影响”,DeepSeek会自动构建蒙特卡洛模型,在Power BI中生成动态场景推演面板。

BI佐罗补充:

这个结论是对的,创意生产力的爆发,从标准化报告到认知增强。这个过程仍然需要 DeepSeek 的更加强大以及和 Power BI 等 BI工具结合的更加无缝。

个人数据资产的增值:从静态分析到智能体协作

DeepSeek 说:

通过DeepSeek的持续学习机制,个人用户在Power BI中的操作偏好、数据注释、模型调整等行为将被转化为个性化知识图谱。例如,当用户多次要求“对比促销活动的ROI”时,系统会自动优化指标计算逻辑,并推荐关联的外部数据源(如社交媒体舆情指数)。这种“分析智能体”的养成模式,使个人数据资产随着使用频次增加持续增值,最终形成独特的竞争力壁垒。

BI佐罗补充:

以上内容也是一个趋势,张三李四常见的分析的方式习惯会被记住,DeepSeek 拿到数据直接就可以初始化整套模式。这还要依赖对 DeepSeek API 接口和 Power BI 等工具的打通和二次自动化产品设计。

机遇评价:个人数据分析的范式迁移

DeepSeek 说:

能力平权:技术栈的简化使数据分析从“专业岗位技能”转变为“基础认知工具”,类似Excel的二次普及。

认知增强:用户可将精力集中于问题定义与决策判断,而非代码调试等低附加值环节,实现从“操作员”到“策略家”的跃迁。

创新民主化:小众领域的个性化分析需求(如个人投资组合优化、健康数据追踪)将获得技术支撑,催生长尾市场创新。

这一变革的本质,是将数据分析从“工具使用”升维至“思维扩展”。正如DeepSeek通过开源策略重构AI生态,其在Power BI中的应用也将重塑个人与技术的关系——不再是“人适应工具”,而是“工具进化适配人的认知疆域”。

个人ABI革命

BI佐罗补充:

这个机遇已经越来越近。首先,在之前,我们用 GPT 3.5 或 GPT 4 以及 o1 去生成一些公式和逻辑,面临很多现实的可用性问题;其次,很多人用不了 GPT 或 Copilot;再有,大预言模型对文本的理解和生成是会最先成熟的,且 DeepSeek 为个人带来了完全免费。因此,这个机遇尽在咫尺了。

第一,Power BI Desktop 是世界上唯一的模型驱动的自助 BI 工具,且对个人完全免费,且语义层支持全文本化。

第二,DeepSeek 是世界上可比肩 GPT 的 AI 工具,且对个人完全免费,且可以搜索和深度推理。

请大家试想,你可以同时免费使用最强大的AI和BI,且它们可以结合,这是否意味着:人人数据分析的 ABI 世界彻底到来

如果说,您还不会用 DeepSeek,只需要用 DeepSeek 就可以,因为它是 AI。

如果说,您还不会用 Power BI,只需要让 DeepSeek 教会你即可,因为它是 AI。

现在是时候来演示两个案例,让大家看到 DeepSeek + Power BI 的震撼表演了。

免费的 DeepSeek vs. 烧钱的咨询公司

如果你正作为企业中的分析师身份为如何分析企业的内容而发愁,又觉得请四大咨询公司来为你们企业做咨询太贵,那么,来看看 DeepSeek 有多强大。

54f62ab4dd088c5ed9c1358d9e29204a.png

可以看出,这里根本不需要打开【深度思考】和【联网搜索】,只需要 8 个字来撬动整套分析方案,继续看看。

8e4c562c54b21cbec35941b0bbaea16f.png

以及:

161b535a74ed69524ad577535ee6cdf8.png

我们感觉这些指标不够丰富,立刻要求它更全面按不同方面,至少给出 20 个。

给出如下:

在零售行业中,分析领域广泛且复杂,涉及销售、库存、客户行为、供应链、财务等多个方面。以下是按不同分析领域给出的至少20个关键指标,涵盖了零售业务的各个方面:

1. 销售分析销售额(Revenue):总销售收入。

销售增长率(Sales Growth Rate):销售额的同比增长率。

毛利率(Gross Margin):销售收入减去销售成本后的利润。

客单价(Average Order Value, AOV):每个订单的平均金额。

每平方英尺销售额(Sales per Square Foot):衡量店铺空间利用效率。

折扣率(Discount Rate):折扣金额占总销售额的比例。

退货率(Return Rate):退货金额占总销售额的比例。

2. 库存分析库存周转率(Inventory Turnover):衡量库存的周转速度。

库存天数(Days of Inventory):库存平均持有的天数。

库存成本(Inventory Cost):库存持有成本。

库存损耗率(Shrinkage Rate):库存损耗占总库存的比例。

缺货率(Stockout Rate):缺货次数占总库存需求的比例。

3. 客户行为分析客户留存率(Customer Retention Rate):老客户的留存比例。

客户生命周期价值(Customer Lifetime Value, CLV):客户在整个生命周期内为公司带来的总价值。

客户获取成本(Customer Acquisition Cost, CAC):获取一个新客户的平均成本。

客户购买频率(Purchase Frequency):客户在一定时间内的购买次数。

客户满意度(Customer Satisfaction Score, CSAT):客户对产品或服务的满意度评分。

4. 渠道分析渠道销售额(Channel Revenue):不同销售渠道(线上、线下、批发等)的销售额。

渠道利润率(Channel Profit Margin):不同销售渠道的利润率。

线上转化率(Online Conversion Rate):网站访问者转化为购买者的比例。

线下客流量(Foot Traffic):实体店的客流量。

5. 供应链分析供应商准时交货率(Supplier On-Time Delivery Rate):供应商按时交货的比例。

供应链管理成本(Supply Chain Management Cost):供应链管理的总成本。

采购成本(Purchase Costs):采购原材料和商品的成本。

原材料库存(Raw Material Inventory):原材料的库存水平。

6. 财务分析净利润率(Net Profit Margin):净利润占总收入的比例。

运营成本(Operating Expenses):公司日常运营的总成本。

现金流(Cash Flow):公司现金的流入和流出情况。

应收账款周转率(Accounts Receivable Turnover):应收账款的回收速度。

应付账款周转率(Accounts Payable Turnover):应付账款的支付速度。

7. 促销与营销分析促销活动ROI(Promotion ROI):促销活动的投资回报率。

广告支出回报率(Return on Ad Spend, ROAS):广告投入与销售收入的比例。

营销活动参与率(Marketing Campaign Engagement Rate):客户参与营销活动的比例。

社交媒体互动率(Social Media Engagement Rate):社交媒体上的互动次数与粉丝数的比例。

8. 员工与运营效率分析员工人均销售额(Sales per Employee):每个员工的平均销售额。

员工流失率(Employee Turnover Rate):员工离职的比例。

运营效率(Operational Efficiency):运营成本与收入的比例。

店铺运营成本(Store Operating Costs):单个店铺的运营成本。

9. 产品分析产品利润率(Product Profit Margin):单个产品的利润率。

产品退货率(Product Return Rate):单个产品的退货率。

产品生命周期(Product Lifecycle):产品从上市到退市的时间。

产品交叉销售率(Cross-Sell Rate):客户购买多个相关产品的比例。

10. 客户细分分析客户细分销售额(Segment Revenue):不同客户细分群体的销售额。

客户细分利润率(Segment Profit Margin):不同客户细分群体的利润率。

客户细分购买频率(Segment Purchase Frequency):不同客户细分群体的购买频率。

客户细分生命周期价值(Segment CLV):不同客户细分群体的生命周期价值。

11. 地理区域分析区域销售额(Regional Revenue):不同地理区域的销售额。

区域利润率(Regional Profit Margin):不同地理区域的利润率。

区域库存周转率(Regional Inventory Turnover):不同地理区域的库存周转率。

区域客户满意度(Regional CSAT):不同地理区域的客户满意度。

这里按照 11 个领域有了 50 个指标。接着,我们强制要求 DeepSeek 按照专业的 ZADMA 方法论 展开详细说明。如下:

e69f897457bf5ec07138dd2b65ddc4d6.png

由于篇幅原因,这个过程就不再展开演示了。

免费的 DeepSeek vs. 收费的 Power BI 教程

通过与 Power BI 的 TMDL 的结合可以全自动化度量值的编写,例如:

bc85269ff0f6c8d8028010f8ec45800a.png

我们将这个内容复制到 Power BI 的 TMDL 中,更新即可。

关于 Power BI 的 TMDL

Power BI 的 TMDL(Tabular Model Definition Language,表格模型定义语言) 是一种用于定义和管理 Power BI 语义模型(Semantic Model)的文本化语言。它允许开发者通过代码的方式创建、修改和管理 Power BI 中的数据模型,提供了一种比传统图形界面更灵活和高效的开发方式。

TMDL 的核心特点

文本化定义TMDL 使用类似于 YAML 的语法,通过文本文件定义表格模型中的对象(如表、列、度量值等),便于人工阅读和编辑。

高效开发TMDL 提供了丰富的代码编辑功能,如语法高亮、自动完成、多行编辑等,显著提升了开发效率。

协作与版本控制TMDL 支持将模型对象拆分为多个文件(如每个表、度量值、关系等单独存储),便于团队协作和版本控制(如 Git)。

灵活性与控制力TMDL 允许开发者直接修改模型元数据(如隐藏列、设置属性等),甚至支持一些在图形界面中无法完成的操作。

与 Power BI 无缝集成TMDL 可以直接在 Power BI Desktop 中使用,并通过代码编辑器实时应用变更,无需重新加载数据。

TMDL 的主要应用场景

批量修改模型例如,批量重命名表或列、修改 Power Query 表达式等。

创建复杂模型通过代码定义透视表、时间智能计算组等高级功能。

模型备份与恢复将模型定义导出为 TMDL 文件,便于备份或在其他环境中恢复。

跨项目重用模型将模型对象(如日历表、计算组)导出为 TMDL 脚本,便于在其他项目中复用。

Power BI 的 TMDL 为 BI 的大规模使用提供了强大的可复用性,很多大型企业和超大型企业,已经因为很多 BI 工具的长期高额的总拥有成本和能力的有限性,而转而使用 Power BI 重构。

BI 工具的成本

808da4ce6f06f08119e1d64432abe692.jpeg

很多企业和个人,仅仅在考虑购买时所发生的成本,这对 BI 和企业数字资产的理解都有很多提升空间。

试想,在一个 1000 人的企业,创建了 200 个常用的报告,这里真正的成本在于:创建报告的背后蕴含着 ETL,模型,可视化,分析,自动化,权限管理等多种工作事项,而它们所花费掉的时间和全民不得不使用它的成本才是:总拥有成本

Power BI 在企业购买时,本来就有天然的成本优势,再加上在长期总拥有成本的计算上,存在着显而易见的优势,这提醒了很多企业,尤其是处在数字化转型中的大型和超大型企业,很可能已经对此产生了巨额的实质性投资而收益有限。

现在是时候重新审视这个趋势和企业的可持续发展数字化战略。

AI 会不会替代掉人工

bc5bf8fa136ed2912097a1df0bec05d0.jpeg

这是一个大家十分关心的话题。360 的创始人周鸿祎是这么说的:会用 AI 的人,替代不会用 AI 的人

其实,从本文的内容就是一个好的案例。

如果你仔细看,会发现一些问题。

1、普通任意问 DeepSeek 的问题,可能无法达到很理想的专业度。

例如这里的零售业指标库的输出问题,这里用了 ZADMA 方法论,这是一个不存在的东西,是用户自己起名字的规则,并对这些规则做定义。这个过程需要用户比较清楚自己需要什么,如果仔细看 ZADMA 方法论的输出可以看到:

064aa55577f42d28a2f72017455526c8.png

这里需要先用 AI 生成一套分析方法论,再用这个方法论来指导 AI 具体再工作。

也就是:AI 的二阶用法

也就是:

- 用 AI 来生成驱动 AI 的指令集:X。

- 用 AI 来执行指令集 X。

当然,还存在 AI 的三阶,四阶等高阶的用法。这个过程中,目前还是要专业性的知识来引导 AI 的方向。

不信你可以用普通的问法和这样的思路来分别试试,就可以看到差距了。如果你做出的差距不大,主要是这套指令生成和优化的不够。

因此,可见更会使用 AI 的用户会比普通用户更有优势。

2、直接生成的 TMDL 里的内容不可用

在本文的案例中,在 TMDL 中生成的内容是直接可用的,即使出现小的问题,立刻就可以调整好而可用。但如果您自己试试会发现,可能根本得不到你想要的内容或者不可用而报错。

这说明 AI 还不够完美,结合用户对工具的理解才能释放 AI 的价值。

对 Power BI 工具的熟悉,大家可以和 AI 慢慢学习,这是非常好的,也推荐大家学习专家内容,配合 AI 效果更好。

因此,我们也就理解了周鸿祎所说的:会用 AI 的人,替代不会用 AI 的人

效率与价值

目前很多伙伴都在初步使用 AI,体验各种能力。由于用户需要给 AI 发送指令,因此,很多情况下,用户的认知以及用户提问的高度决定了 AI 的输出。大家目前对 BI 和 AI 的使用还是停留在效率层面。当然,企业在高速的发展中,对数据和智能化的要求不仅仅是提升效率,而是:降本增效,创造价值

0eb4990ff252140aa5dde21cbc2cb738.png

我们利用 AI 将很多用户进行划分,可以得到:

5b7496e34713516e778f87770f8a35c3.png

使用工具,可以提升效率。而更专业化和更系统化地使用工具,结合方法和模式还能创造价值,这是我们需要注意的。

总结

DeepSeek + Power BI 的本质就是:AI + BI。而且人人可用,人人免费,人人ABI,这个时代已经普适化。

在 AI 和 BI 的融合还没有傻瓜到不需要人的时候之前,会用 ABI 的人就会更好的驾驭数据,提升效率,创造价值。

我们在 2025 年也会帮助更多的伙伴,使用 DeepSeek,Power BI 实现到精英派和超级个体的转变。  

### DeepSeek ABI Integration and Compatibility #### Understanding ABI Compatibility in the Context of DeepSeek In software development, ensuring Application Binary Interface (ABI) compatibility is crucial when integrating libraries or tools into larger systems. For a platform like DeepSeek that may involve extensive use of external C/C++ libraries, maintaining ABI stability ensures seamless upgrades without breaking existing applications[^1]. DeepSeek can leverage an ABI compliance checker tool to monitor changes within its core components as well as third-party dependencies. This approach helps identify potential issues early during development cycles rather than encountering them after deployment. For instance, suppose there exists a hypothetical scenario where DeepSeek uses `libtinyalsa` for audio processing capabilities. If updates are made to this library leading to extending changes in its ABI, developers would need to address these modifications promptly using scripts provided by Android build environments: ```bash $ANDROID_BUILD_TOP/development/vndk/tools/header-checker/utils/create_reference_dumps.py -l libtinyalsa ``` This command regenerates reference dumps necessary for validating future ABI consistency checks against new versions of `libtinyalsa`. #### Implementing ABI Checks Within Development Pipelines To integrate ABI verification processes effectively within Continuous Integration/Continuous Deployment pipelines used by projects such as DeepSeek, consider automating tasks related to running ABICC on every commit or pull request targeting critical branches. Automating these steps reduces human errors while promoting best practices around dependency management. Additionally, incorporating static analysis tools capable of detecting common pitfalls associated with violating established conventions regarding function signatures, data structures alignment requirements, etc., further strengthens overall system robustness over time. #### Best Practices for Maintaining ABI Stability When developing modules intended for inclusion inside platforms similar to DeepSeek, adhering strictly to guidelines concerning public interfaces exposed through headers files becomes paramount. Developers should avoid making unnecessary alterations outside documented APIs unless absolutely required due to functional enhancements or security patches. Furthermore, employing versioned symbols allows consumers of shared objects (.so files under Linux/macOS; .dlls on Windows) to coexist peacefully alongside multiple iterations simultaneously installed across diverse operating systems configurations encountered throughout target user bases. --related questions-- 1. How does one set up automated testing frameworks specifically tailored towards catching ABI regressions? 2. What strategies exist for minimizing disruptions caused by mandatory API deprecations affecting widely adopted open-source packages? 3. Can you provide examples illustrating how symbol versioning works internally within ELF binaries produced via GCC/Clang compilers? 4. Are there any notable differences between handling ABI concerns among various programming languages beyond just C/C++ ecosystems?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值