NVIDIA Blackwell 架构

打破生成式 AI 和加速计算的壁垒

探索 NVIDIA Blackwell 架构为生成式 AI 和加速计算带来的突破性进步。Blackwell 基于多代 NVIDIA 技术构建,以出众的性能、效率和规模揭开了生成式 AI 领域的新篇章。

深入了解技术突破

NVIDIA Blackwell architecture packs 208 billion transistors

新型 AI 超级芯片

Blackwell 架构 GPU 具有 2080 亿个晶体管,采用专门定制的台积电 4NP 工艺制造。所有 Blackwell 产品均采用双倍光刻极限尺寸的裸片,通过 10 TB/s 的片间互联技术连接成一块统一的 GPU。

第二代 Transformer 引擎

第二代 Transformer 引擎将定制的 Blackwell Tensor Core 技术与 NVIDIA® TensorRT™ -LLM 和 NeMo™ 框架创新相结合,加速大语言模型 (LLM) 和专家混合模型 (MoE) 的推理和训练。

为了强效助力 MoE 模型的推理 

### Blackwell 架构概述 Blackwell 架构是英伟达最新一代 GPU 架构,旨在纪念首位入选美国国家科学院的黑人学者、数学家和博弈论学家 David Harold Blackwell。该架构继承了 Hopper GPU 架构的优点,并进一步提升了性能和功能[^1]。 ### 技术细节 #### 制造工艺与晶体管数量 Blackwell 架构采用了专门定制的双倍光刻极限尺寸 4NP TSMC 工艺制造,拥有高达 2080 亿个晶体管。这种先进的制程技术不仅提高了晶体管密度,还显著降低了功耗,使得每瓦特性能得到了极大提升[^2]。 #### 片间互联技术 为了增强数据传输速度并减少延迟,Blackwell 架构引入了 10TB/s 的片间互联带宽,能够高效地将多个 GPU 裸片连接成单一逻辑单元。这一特性对于大规模分布式计算任务尤为重要,可以大幅提高系统的整体吞吐量和响应时间。 ```python # 示例代码展示如何配置多GPU间的通信参数 import nvidia.smi as nvsmi def configure_interconnect(bandwidth=10e12): # 设置默认带宽为10 TB/s try: handle = nvsmi.nvmlDeviceGetHandleByIndex(0) nvsmi.setInterConnectBandwidth(handle, bandwidth) print(f"成功设置片间互联带宽至 {bandwidth / (10**12)} TB/s") except Exception as e: print(e) configure_interconnect() ``` #### Superchip 设计 基于 Blackwell 架构NVIDIA 推出了 GB200 Grace Blackwell 超级芯片。这款超级芯片通过 900GB/s 的超低功耗片间互联,集成了两个 B200 Tensor Core GPU 和一个 NVIDIA Grace CPU。这使得 GB200 成为处理复杂 AI 计算的理想选择之一。 #### 扩展系统 针对高度计算密集型工作负载的需求,NVIDIA 开发了 GB200 NVL72——一个多节点液冷机架级扩展系统。此系统由 36 个 Grace Blackwell 超级芯片组成,总共包含 72 个 Blackwell GPU 和 36 个 Grace CPU,全部通过第五代 NVLink 进行高速互连。 ### 发布计划与发展路线图 按照官方规划,配备 Blackwell 架构的产品预计于今年晚些时候正式发售。与此同时,英伟达公布了未来三年的技术演进路径:将在 2025 年推出 Blackwell Ultra,在 2026 年发布 Rubin 架构,并在 2027 年带来 Rubin Ultra 架构升级版[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值