/*问题及代码
*Copyright(c)2016,烟台大学计算机学院
*All right reserved.
*文件名称:利用遍历思想求解图问题.cpp
*作者:李潇
*完成日期;2016年11月24日
*版本号;v1.0
*问题描述:
假设图G采用邻接表存储,分别设计实现以下要求的算法,要求用区别于示例中的图进行多次测试,通过观察输出值,掌握相关问题的处理方法。
(1)设计一个算法,判断顶点u到v是否有简单路径
(2)设计一个算法输出图G中从顶点u到v的一条简单路径(设计测试图时,保证图G中从顶点u到v至少有一条简单路径)。
(3)输出从顶点u到v的所有简单路径。
(4)输出图G中从顶点u到v的长度为s的所有简单路径。
(5)求图中通过某顶点k的所有简单回路(若存在)
(6)求不带权连通图G中从顶点u到顶点v的一条最短路径。
(7)求不带权连通图G中,距离顶点v最远的顶点k
*输入描述:图的邻接矩阵
*程序输出:根据要求输出。
*/
//头文件
#ifndef GRAPH_H_INCLUDED
#define GRAPH_H_INCLUDED
#define MAXV 100 //最大顶点个数
#define INF 32767 //INF表示∞
typedef int InfoType;
//以下定义邻接矩阵类型
typedef struct
{
int no; //顶点编号
InfoType info; //顶点其他信息,在此存放带权图权值
} VertexType; //顶点类型
typedef struct //图的定义
{
int edges[MAXV][MAXV]; //邻接矩阵
int n,e; //顶点数,弧数
VertexType vexs[MAXV]; //存放顶点信息
} MGraph; //图的邻接矩阵类型
//以下定义邻接表类型
typedef struct ANode //弧的结点结构类型
{
int adjvex; //该弧的终点位置
struct ANode *nextarc; //指向下一条弧的指针
InfoType info; //该弧的相关信息,这里用于存放权值
} ArcNode;
typedef int Vertex;
typedef struct Vnode //邻接表头结点的类型
{
Vertex data; //顶点信息
int count; //存放顶点入度,只在拓扑排序中用
ArcNode *firstarc; //指向第一条弧
} VNode;
typedef VNode AdjList[MAXV]; //AdjList是邻接表类型
typedef struct
{
AdjList adjlist; //邻接表
int n,e; //图中顶点数n和边数e
} ALGraph; //图的邻接表类型
//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
// n - 矩阵的阶数
// g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g
void DispMat(MGraph g);//输出邻接矩阵g
void DispAdj(ALGraph *G);//输出邻接表G
#endif // GRAPH_H_INCLUDED
一二题代码:
#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV]; //定义存放节点的访问标志的全局数组
void ArrayToList(int *Arr, int n, ALGraph *&G)
{
int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数
ArcNode *p;
G=(ALGraph *)malloc(sizeof(ALGraph));
G->n=n;
for (i=0; i<n; i++) //给邻接表中所有头节点的指针域置初值
G->adjlist[i].firstarc=NULL;
for (i=0; i<n; i++) //检查邻接矩阵中每个元素
for (j=n-1; j>=0; j--)
if (Arr[i*n+j]!=0) //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
{
p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p
p->adjvex=j;
p->info=Arr[i*n+j];
p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p
G->adjlist[i].firstarc=p;
}
G->e=count;
}
void ExistPath(ALGraph *G,int u,int v, bool &has)
{
int w;
ArcNode *p;
visited[u]=1;
if(u==v)
{
has=true;
return;
}
p=G->adjlist[u].firstarc;
while (p!=NULL)
{
w=p->adjvex;
if (visited[w]==0)
ExistPath(G,w,v,has);
p=p->nextarc;
}
}
void HasPath(ALGraph *G,int u,int v)
{
int i;
bool flag = false;
for (i=0; i<G->n; i++)
visited[i]=0; //访问标志数组初始化
ExistPath(G,u,v,flag);
printf(" 从 %d 到 %d ", u, v);
if(flag)
printf("有简单路径\n");
else
printf("无简单路径\n");
}
void FindAPath(ALGraph *G,int u,int v,int path[],int d)
{
//d表示path中的路径长度,初始为-1
int w,i;
ArcNode *p;
visited[u]=1;
d++;
path[d]=u; //路径长度d增1,顶点u加入到路径中
if (u==v) //找到一条路径后输出并返回
{
//printf("一条简单路径为:");
for (i=0; i<=d; i++)
printf("%d ",path[i]);
printf("\n");
return; //找到一条路径后返回
}
p=G->adjlist[u].firstarc; //p指向顶点u的第一个相邻点
while (p!=NULL)
{
w=p->adjvex; //相邻点的编号为w
if (visited[w]==0)
FindAPath(G,w,v,path,d);
p=p->nextarc; //p指向顶点u的下一个相邻点
}
}
void APath(ALGraph *G,int u,int v)
{
int i;
int path[MAXV];
for (i=0; i<G->n; i++)
visited[i]=0; //访问标志数组初始化
printf("从%d到%d的一条路径为:",u,v);
FindAPath(G,u,v,path,-1); //d初值为-1,调用时d++,即变成了0
}
int main()
{
ALGraph *G;
int A[5][5]=
{
{1,0,1,0,1},
{0,1,0,1,0},
{1,0,1,0,1},
{0,1,1,0,0},
{1,0,0,1,0},
}; //请画出对应的有向图
ArrayToList(A[0], 5, G);
HasPath(G, 2, 4);
HasPath(G, 4, 1);
APath(G, 2, 4);
APath(G, 4, 1);
return 0;
}
运行结果:
三四题代码:
#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV]; //定义存放节点的访问标志的全局数组
void ArrayToList(int *Arr, int n, ALGraph *&G)
{
int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数
ArcNode *p;
G=(ALGraph *)malloc(sizeof(ALGraph));
G->n=n;
for (i=0; i<n; i++) //给邻接表中所有头节点的指针域置初值
G->adjlist[i].firstarc=NULL;
for (i=0; i<n; i++) //检查邻接矩阵中每个元素
for (j=n-1; j>=0; j--)
if (Arr[i*n+j]!=0) //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
{
p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p
p->adjvex=j;
p->info=Arr[i*n+j];
p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p
G->adjlist[i].firstarc=p;
}
G->e=count;
}
void FindPaths(ALGraph *G,int u,int v,int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
int w,i;
ArcNode *p;
visited[u]=1;
d++; //路径长度增1
path[d]=u; //将当前顶点添加到路径中
if (u==v && d>1) //输出一条路径
{
printf(" ");
for (i=0; i<=d; i++)
printf("%d ",path[i]);
printf("\n");
}
p=G->adjlist[u].firstarc; //p指向u的第一条边
while(p!=NULL)
{
w=p->adjvex; //w为u的邻接顶点
if (visited[w]==0) //若顶点未标记访问,则递归访问之
FindPaths(G,w,v,path,d);
p=p->nextarc; //找u的下一个邻接顶点
}
visited[u]=0; //恢复环境
}
void DispPaths(ALGraph *G,int u,int v)
{
int i;
int path[MAXV];
for (i=0; i<G->n; i++)
visited[i]=0; //访问标志数组初始化
printf("从%d到%d的所有路径:\n",u,v);
FindPaths(G,u,v,path,-1);
printf("\n");
}
void SomePaths(ALGraph *G,int u,int v,int s, int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
int w,i;
ArcNode *p;
visited[u]=1;
d++; //路径长度增1
path[d]=u; //将当前顶点添加到路径中
if (u==v && d==s) //输出一条路径
{
printf(" ");
for (i=0; i<=d; i++)
printf("%d ",path[i]);
printf("\n");
}
p=G->adjlist[u].firstarc; //p指向u的第一条边
while(p!=NULL)
{
w=p->adjvex; //w为u的邻接顶点
if (visited[w]==0) //若顶点未标记访问,则递归访问之
SomePaths(G,w,v,s,path,d);
p=p->nextarc; //找u的下一个邻接顶点
}
visited[u]=0; //恢复环境
}
void DispSomePaths(ALGraph *G,int u,int v, int s)
{
int i;
int path[MAXV];
for (i=0; i<G->n; i++)
visited[i]=0; //访问标志数组初始化
printf("从%d到%d长为%d的路径:\n",u,v,s);
SomePaths(G,u,v,s,path,-1);
printf("\n");
}
int main()
{
ALGraph *G;
int A[5][5]=
{
{0,1,0,1,0},
{1,0,1,0,1},
{0,1,0,1,0},
{1,0,1,0,1},
{0,1,0,1,0}
}; //请画出对应的有向图
ArrayToList(A[0], 5, G);
DispSomePaths(G, 1, 4, 3);
DispSomePaths(G, 3, 2, 3);
DispPaths(G, 1, 4);
DispPaths(G, 3, 4);
return 0;
}
运行结果:
第五题代码:
#include <stdio.h>
#include <malloc.h>
#include "graph.h"
int visited[MAXV]; //定义存放节点的访问标志的全局数组
void ArrayToList(int *Arr, int n, ALGraph *&G)
{
int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数
ArcNode *p;
G=(ALGraph *)malloc(sizeof(ALGraph));
G->n=n;
for (i=0; i<n; i++) //给邻接表中所有头节点的指针域置初值
G->adjlist[i].firstarc=NULL;
for (i=0; i<n; i++) //检查邻接矩阵中每个元素
for (j=n-1; j>=0; j--)
if (Arr[i*n+j]!=0) //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
{
p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p
p->adjvex=j;
p->info=Arr[i*n+j];
p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p
G->adjlist[i].firstarc=p;
}
G->e=count;
}
void FindPaths(ALGraph *G,int u,int v,int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
int w,i;
ArcNode *p;
visited[u]=1;
d++; //路径长度增1
path[d]=u; //将当前顶点添加到路径中
if (u==v && d>1) //输出一条路径
{
printf(" ");
for (i=0; i<=d; i++)
printf("%d ",path[i]);
printf("\n");
}
p=G->adjlist[u].firstarc; //p指向u的第一条边
while(p!=NULL)
{
w=p->adjvex; //w为u的邻接顶点
if (visited[w]==0) //若顶点未标记访问,则递归访问之
FindPaths(G,w,v,path,d);
p=p->nextarc; //找u的下一个邻接顶点
}
visited[u]=0; //恢复环境
}
void DispPaths(ALGraph *G,int u,int v)
{
int i;
int path[MAXV];
for (i=0; i<G->n; i++)
visited[i]=0; //访问标志数组初始化
printf("从%d到%d的所有路径:\n",u,v);
FindPaths(G,u,v,path,-1);
printf("\n");
}
int main()
{
ALGraph *G;
int A[5][5]=
{
{0,1,0,1,0},
{1,0,1,0,0},
{0,1,0,1,1},
{1,0,1,0,1},
{0,0,1,1,0}
}; //请画出对应的有向图
ArrayToList(A[0], 5, G);
DispPaths(G, 1, 4);
DispPaths(G, 3, 4);
return 0;
}
运行结果;
第六七题代码:
#include <stdio.h>
#include <malloc.h>
#include "graph.h"
typedef struct
{
int data; //顶点编号
int parent; //前一个顶点的位置
} QUERE; //非环形队列类型
int visited[MAXV]; //定义存放节点的访问标志的全局数组
void ArrayToList(int *Arr, int n, ALGraph *&G)
{
int i,j,count=0; //count用于统计边数,即矩阵中非0元素个数
ArcNode *p;
G=(ALGraph *)malloc(sizeof(ALGraph));
G->n=n;
for (i=0; i<n; i++) //给邻接表中所有头节点的指针域置初值
G->adjlist[i].firstarc=NULL;
for (i=0; i<n; i++) //检查邻接矩阵中每个元素
for (j=n-1; j>=0; j--)
if (Arr[i*n+j]!=0) //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
{
p=(ArcNode *)malloc(sizeof(ArcNode)); //创建一个节点*p
p->adjvex=j;
p->info=Arr[i*n+j];
p->nextarc=G->adjlist[i].firstarc; //采用头插法插入*p
G->adjlist[i].firstarc=p;
}
G->e=count;
}
void ShortPath(ALGraph *G,int u,int v)
{
//输出从顶点u到顶点v的最短逆路径
ArcNode *p;
int w,i;
QUERE qu[MAXV]; //非环形队列
int front=-1,rear=-1; //队列的头、尾指针
int visited[MAXV];
for (i=0; i<G->n; i++) //访问标记置初值0
visited[i]=0;
rear++; //顶点u进队
qu[rear].data=u;
qu[rear].parent=-1;
visited[u]=1;
while (front!=rear) //队不空循环
{
front++; //出队顶点w
w=qu[front].data;
if (w==v) //找到v时输出路径之逆并退出
{
i=front; //通过队列输出逆路径
while (qu[i].parent!=-1)
{
printf("%2d ",qu[i].data);
i=qu[i].parent;
}
printf("%2d\n",qu[i].data);
break;
}
p=G->adjlist[w].firstarc; //找w的第一个邻接点
while (p!=NULL)
{
if (visited[p->adjvex]==0)
{
visited[p->adjvex]=1;
rear++; //将w的未访问过的邻接点进队
qu[rear].data=p->adjvex;
qu[rear].parent=front;
}
p=p->nextarc; //找w的下一个邻接点
}
}
}
int Maxdist(ALGraph *G,int v)
{
ArcNode *p;
int i,j,k;
int Qu[MAXV]; //环形队列
int visited[MAXV]; //访问标记数组
int front=0,rear=0; //队列的头、尾指针
for (i=0; i<G->n; i++) //初始化访问标志数组
visited[i]=0;
rear++;
Qu[rear]=v; //顶点v进队
visited[v]=1; //标记v已访问
while (rear!=front)
{
front=(front+1)%MAXV;
k=Qu[front]; //顶点k出队
p=G->adjlist[k].firstarc; //找第一个邻接点
while (p!=NULL) //所有未访问过的相邻点进队
{
j=p->adjvex; //邻接点为顶点j
if (visited[j]==0) //若j未访问过
{
visited[j]=1;
rear=(rear+1)%MAXV;
Qu[rear]=j; //进队
}
p=p->nextarc; //找下一个邻接点
}
}
return k;
}
int main()
{
ALGraph *G;
int A[9][9]=
{
{0,1,1,0,0,0,1,0,0},
{0,0,0,1,1,0,0,0,1},
{1,0,0,0,1,1,0,0,0},
{0,0,1,0,0,0,1,0,0},
{1,0,0,0,0,1,1,0,1},
{0,0,1,0,0,0,0,1,0},
{1,0,0,0,1,0,0,1,1},
{0,0,1,0,0,0,1,0,1},
{1,0,0,0,1,0,0,1,0}
}; //请画出对应的有向图
ArrayToList(A[0], 9, G);
ShortPath(G,2,6);
ShortPath(G,5,8);
printf("离顶点0最远的顶点:%d\n",Maxdist(G,0));
return 0;
}
运行结果:
知识点总结:
遍历思想和递归算法的应用
心得体会:
这次的算法验证把遍历过程和递归过程又复习了一遍,收获颇多。