PaddleDetection快速体验quick_start

1 快速体验

# 设置显卡
export CUDA_VISIBLE_DEVICES=0

# 用PP-YOLO算法在COCO数据集上预训练模型预测一张图片
python tools/infer.py -c configs/ppyolo/ppyolo_r50vd_dcn_1x_coco.yml -o use_gpu=true weights=https://paddledet.bj.bcebos.com/models/ppyolo_r50vd_dcn_1x_coco.pdparams --infer_img=demo/000000014439.jpg

2 数据准备

数据集参考Kaggle数据集 ,包含877张图像,数据类别4类:crosswalk,speedlimit,stop,trafficlight。 将数据划分为训练集701张图和测试集176张图,下载链接.

# 注意:可跳过这步下载,后面训练会自动下载
python dataset/roadsign_voc/download_roadsign_voc.py

# speedlimit      限速
# crosswalk       人行横道
# trafficlight    红绿灯(等于 traffic signals)
# stop            停止,车站

3 训练、评估、预测

3.1 训练

# 边训练边测试 CPU需要约1小时(use_gpu=false),1080Ti GPU需要约10分钟
# -c 参数表示指定使用哪个配置文件
# -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置),这里设置使用gpu
# --eval 参数表示边训练边评估,最后会自动保存一个名为model_final.pdparams的模型

python tools/train.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml --eval -o use_gpu=true

如果想通过VisualDL实时观察loss变化曲线,在训练命令中添加–use_vdl=true,以及通过–vdl_log_dir设置日志保存路径。

python -m pip install visualdl -i https://mirror.baidu.com/pypi/simple
python -u tools/train.py \
    -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml \
    -o use_gpu=true \
    --use_vdl=true \
    --vdl_log_dir=vdl_dir/scalar \
    --eval

visualdl --logdir vdl_dir/scalar/ --host 10.168.47.17 --port 8888

3.2 评估

# 评估 默认使用训练过程中保存的model_final.pdparams
# -c 参数表示指定使用哪个配置文件
# -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置)
# 目前只支持单卡评估

python tools/eval.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true

最终模型精度在mAP=0.85左右,由于数据集较小因此每次训练结束后精度会有一定波动

3.3 预测

# -c 参数表示指定使用哪个配置文件
# -o 参数表示指定配置文件中的全局变量(覆盖配置文件中的设置)
# --infer_img 参数指定预测图像路径
# 预测结束后会在output文件夹中生成一张画有预测结果的同名图像

python tools/infer.py -c configs/yolov3/yolov3_mobilenet_v1_roadsign.yml -o use_gpu=true --infer_img=demo/road554.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张欣-男

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值