Qualcomm AudioReach Basic VoiceCall seq --001

21 篇文章 5 订阅 ¥199.90 ¥299.90

HAL VoiceCall Start CallFlow
在这里插入图片描述
HAL VoiceCall Stop CallFlow
在这里插入图片描述

PALQualcomm Audio Layer
ACDBAudio Calibration Database
seq2seq-attention是指在seq2seq模型中引入了注意力机制(Attention)。在传统的seq2seq模型中,编码器将输入序列转化为一个固定长度的向量,然后解码器将这个向量解码成输出序列。而在seq2seq-attention模型中,解码器在每个时间步都会根据输入序列的不同部分给予不同的注意力权重,从而更加关注与当前时间步相关的输入信息。这样可以提高模型对输入序列的理解能力,进而提升预测的准确性。引入注意力机制后,seq2seq-attention模型在翻译、文本摘要和问答等任务上有着更好的表现。\[1\]\[2\] #### 引用[.reference_title] - *1* [NLP自然语言处理之RNN--LSTM--GRU--seq2seq--attention--self attetion](https://blog.csdn.net/weixin_41097516/article/details/103174768)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [自注意力机制(Self-Attention):从Seq2Seq模型到一般RNN模型](https://blog.csdn.net/qq_24178985/article/details/118683144)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

macheria

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值