在自然语言处理(NLP)领域,BERT(Bidirectional Encoder Representations from Transformers)因其卓越的性能和灵活的词向量表示而备受关注。本文将深入探讨BERT的词向量模型是否固定,以及在使用预训练BERT模型时,初始化参数的一致性问题。
一、BERT的词向量是固定的吗?
1. 上下文化的词向量
BERT采用上下文化的词向量,这意味着每个词的向量表示不是固定的,而是根据其在具体上下文中的使用情况动态生成的。这与传统的词向量模型(如Word2Vec或GloVe)不同,后者为每个词分配一个固定的向量,不论其出现在什么上下文中。
传统词向量模型 vs. BERT
-
传统词向量模型:
- 每个词对应一个唯一的向量。
- 无法区分同一词在不同语境中的含义(如“银行”在“河边的银行”和“金融机构的银行”中的不同含义)。
-
BERT的词向量:
- 同一个词在不同的句子或不同的上下文中会有不同的向量表示。
- 能够根据上下文动态调整词的表示,处理多义词和复杂语境时表现出色。
2. BERT的词嵌入层
BERT的输入首先通过词嵌入层,这包括:
- Token Embeddings(词标记嵌入):将词汇表中的每个词映射为一个向量。
- Segment Embeddings(句子分段嵌入)