学习笔记(一)__词向量

词向量

词向量可以表示两个词的语义相似度

输入
模型
词向量_distributed representation

可以训练词向量的模型主要有:
CBOW、skip-gram、NNLM、Glove、ELMo、MF(矩阵分解)、Gause Embedding、bert

skip-gram

根据中心词预测上下文
对于 w1,w2,w3,w4,w5
P=p(w2|w1)p(w1|w2)p(w3|w2)p(w2|w3)p(w4|w3)p(w3|w4)p(w5|w4)p(w4|w5)

CBOW

根据上下文预测中心词
对于 w1,w2,w3,w4,w5
P=p(w2|w1w3)p(w3|w2w4)p(w4|w3w5)

NNLM

P=p(w2|w1)p(w3|w2)p(w4|w3)p(w5|w4)

以上方法训练词向量的问题

训练出的词向量是固定的,当面对一词多义的情况时,无法根据上下文语境区分语义

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值