在机器学习领域中,我们有时希望将自己训练的模型部署为服务,并让其他用户可以通过 API 的方式来访问它。这篇文章将教你如何将本地模型部署为一个 REST API 服务,并实现类似 OpenAI 的 API Key 机制,从而让他人使用您的 API 服务。
本文内容包括:
-
创建 REST API 服务
-
生成并管理 API 密钥
-
添加配额和限流机制
-
保护 API 的安全性
-
部署模型 API
1. 创建 REST API 服务
首先,您需要将本地的机器学习模型部署为一个可以通过 HTTP 请求访问的 REST API 服务。在 Python 中,可以使用 Flask 或 FastAPI 等框架将模型包装成 API。
以下是一个使用 FastAPI 的示例,将模型部署为 REST API:
from fastapi import FastAPI, HTTPException, Request
from pydantic import BaseModel
# 假设我们有一个本地模型的函数
def predict(input_data):
# 这是您的模型预测函数
return {"prediction": "模型预测结果"}
app = FastAPI()
# API 输入的格式
class ModelInput(BaseModel):
input_data: str
@app.post("/predict")
async def get_prediction(input: ModelInput, request: Request):
api_key = request.headers.get("