tensorflow学习(二)自制数据集

本文介绍如何使用TensorFlow创建自定义的数据集,包括数据集的作用、实现代码及详细解析,通过调整神经网络的训练集和测试集,提升模型在特定领域的应用效果。
摘要由CSDN通过智能技术生成

作用

可以用神经网络解决本领域的应用

代码

#第一步:import库
import tensorflow as tf
from PIL import Image#引入了PIL库用来管理图片
import numpy as np#引入numpy库管理数组
import os
#第二步:输入网络的训练集和测试集
train_path = './mnist_image_label/mnist_train_jpg_60000/'#用来进行制作自制训练数据的路径
train_txt = './mnist_image_label/mnist_train_jpg_60000.txt'#用来进行制作自制训练数据的文件
x_train_savepath = './mnist_image_label/mnist_x_train.npy'#自制训练数据储存路径
y_train_savepath = './mnist_image_label/mnist_y_train.npy'#自制训练标签储存路径

test_path = './mnist_image_label/mnist_test_jpg_10000/'#用来进行制作自制测试数据的路径
test_txt = './mnist_image_label/mnist_test_jpg_10000.txt'#用来进行制作自制测试数据的文件
x_test_savepath = './mnist_image_label/mnist_x_test.npy'#自制测试数据储存路径
y_test_savepath = './mnist_image_label/mnist_y_test.npy'#自制测试标签储存路径

#自制数据集的操作函数
def generateds(path, txt):
    f = open(txt, 'r')  # 以只读形式打开txt文件
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值