作用
可以用神经网络解决本领域的应用
代码
#第一步:import库
import tensorflow as tf
from PIL import Image#引入了PIL库用来管理图片
import numpy as np#引入numpy库管理数组
import os
#第二步:输入网络的训练集和测试集
train_path = './mnist_image_label/mnist_train_jpg_60000/'#用来进行制作自制训练数据的路径
train_txt = './mnist_image_label/mnist_train_jpg_60000.txt'#用来进行制作自制训练数据的文件
x_train_savepath = './mnist_image_label/mnist_x_train.npy'#自制训练数据储存路径
y_train_savepath = './mnist_image_label/mnist_y_train.npy'#自制训练标签储存路径
test_path = './mnist_image_label/mnist_test_jpg_10000/'#用来进行制作自制测试数据的路径
test_txt = './mnist_image_label/mnist_test_jpg_10000.txt'#用来进行制作自制测试数据的文件
x_test_savepath = './mnist_image_label/mnist_x_test.npy'#自制测试数据储存路径
y_test_savepath = './mnist_image_label/mnist_y_test.npy'#自制测试标签储存路径
#自制数据集的操作函数
def generateds(path, txt):
f = open(txt, 'r') # 以只读形式打开txt文件