算法——动态规划

本文深入探讨动态规划的本质,通过斐波那契数列、青蛙跳台阶、最大连续子数组和、字符串分割及0-1背包问题等实例,阐述如何定义状态、状态转移方程以及初始化。动态规划通过解决子问题并存储结果,实现复杂问题的高效求解,广泛应用于计算机科学的算法设计中。
摘要由CSDN通过智能技术生成

特点

  1. 把原来问题分解成相似的子问题。
  2. 所有子问题只解决一次。
  3. 储存子问题的解。

本质

对问题 状态的定义转移方程的定义(状态与状态之间的递推关系)

思考方式

  1. 定义状态
  2. 状态间转移方程的定义
  3. 状态的初始化
  4. 返回结果

典型问题

  1. 斐波那契数列

  2. 变态青蛙跳台阶

  3. 最大连续子数组和
    https://leetcode-cn.com/problems/lian-xu-zi-shu-zu-de-zui-da-he-lcof/

  4. 字符串分割
    https://leetcode-cn.com/problems/word-break/

  5. 0-1背包问题
    KS(i,j):代表当前背包剩余容量为j时,前i个物品最佳组合所对应的价值;
    那这里的递推关系式是怎样的呢?对于第i个物品,有两种可能:

    1)背包剩余容量不足以容纳该物品,此时背包的价值与前i-1个物品的价值是一样的,KS(i,j) = KS(i-1,j)
    2)背包剩余容量可以装下该商品,此时需要进行判断,因为装了该商品不一定能使最终组合达到最大价值,如果不装该商品,则价值为:KS(i-1,j),如果装了该商品,则价值为KS(i-1,j-wi) + vi,从两者中选择较大的那个,所以就得出了递推关系式:
    在这里插入图片描述
    https://www.cnblogs.com/mfrank/p/10533701.html

  6. 回文串分割
    https://leetcode-cn.com/problems/palindrome-partitioning/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值