http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1022
题意:石子归并的加强版,原本是线形,现在是环形,原本数据范围是100,现在数据范围是1000。
首先解决环形问题,常见解决环形问题的套路就是倍增序列,在原序列末尾再接上一段原序列,中间跨越两段序列的那块就达到了环形的目的。这样按线形的跑,最后枚举起点,取最大的 f[i][i+n−1] f [ i ] [ i + n − 1 ] 即可。
然后就是数据范围变大的问题,原来n<=100的时候,时间复杂度
O(n3)
O
(
n
3
)
的做法是完全够使的,现在加强到了1000,就要考虑一种神奇的优化——四边形不等式优化。
这里借用本部大佬的PPT来简单介绍四边形不等式优化:
先介绍两个定义:
而对于区间DP,常见的转移形式是这样的:
若这里的
w(i,j)
w
(
i
,
j
)
关于区间包含关系单调且满足四边形不等式,那么这里的
dp(i,j)
d
p
(
i
,
j
)
满足四边形不等式。
我们可以得到如下两个定理:
这样我们定义出了表示
dp(i,j)
d
p
(
i
,
j
)
最优划分点中最右的
s[i][j]
s
[
i
]
[
j
]
,利用
s[i][j]
s
[
i
]
[
j
]
的单调性我们可以得到如下优化:
利用此优化,我们枚举划分k的时候就不需要遍历
i j
i
j
了,只需要从
s[i][j−1]
s
[
i
]
[
j
−
1
]
到
s[i+1][j]
s
[
i
+
1
]
[
j
]
循环即可,而这层循环最大跑2次。时间复杂度由此变成了
O(n2)
O
(
n
2
)
。
实现起来我们需要先将
s[i][i]
s
[
i
]
[
i
]
赋初值为
i
i
,然后每次更新的同时维护
s[i][j]
s
[
i
]
[
j
]
,具体见代码。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
#define INF 0x3f3f3f3f
using namespace std;
int f[2010][2010],s[2010][2010],a[2010];
int ans=INF,n,x;
int main()
{
memset(f,INF,sizeof(f));
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&x);
a[i]=a[i-1]+x;
f[i][i]=0;f[i+n][i+n]=0;
}
for(int i=1;i<=n;i++)
a[i+n]=a[i]+a[n];
for(int i=1;i<=n*2;i++)
s[i][i]=i;
for(int l=2*n;l>=1;l--)
{
for(int r=l+1;r<=l+n+1;r++)
{
for(int k=s[l][r-1];k<=s[l+1][r];k++)
{
int tmp=f[l][k]+f[k+1][r]+a[r]-a[l-1];
if(tmp<=f[l][r])
{
f[l][r]=tmp;
s[l][r]=k;
}
}
}
}
for(int i=1;i<=n;i++)
{
ans=min(ans,f[i][i+n-1]);
}
printf("%d",ans);
return 0;
}