机器学习:信息熵理解

    如果说概率是对事件确定性的度量、那么信息(包括信息量和信息熵)就是对事物不确定性的度量。信息熵是由香农(C.E.Shannon)在1948年发表的论文《通信的数据理论(A Mathematical Theory of Communication)》中提出的概念。他借用热力学中热熵的概念(热熵是表示分子状态混乱程度的物理量),解决了对信息的量化度量问题,也常用来对不确定性进行度量。


信息量与信息熵

    信息量在数学上表示为 I ( X ) = − l o g P ( X ) I(X) = -logP(X) I(X)=logP(X)
    信息熵则被定义为对平均不确定性的度量。一个离散随机变量 X X X的信息熵 H ( X ) H(X) H(X)定义为:

     H ( X ) = ∑ X P ( X ) l o g 1 P ( X ) = − ∑ X P ( X ) l o g P ( X ) H(X) = \sum_{X}P(X)log\frac{1}{P(X)}= -\sum_{X}P(X)logP(X) H(X)=XP(X)logP(X)1=XP(X)logP(X)

    其中、约定 0 l o g ( 1 / 0 ) = 0 0log(1 / 0) = 0 0log(1/0)=0,对数若以2为底,则熵的单位是比特;若以 e e e为底,则其单位是奈特。若无特殊说明,则均采用比特为单位。
    1、信息熵的本质是信息量的期望。
    2、信息熵是对随机变量不确定性的度量。随机变量 X X X的熵越大,说明它的不确定性也越大。若随机变量退化为定值,则熵为0。
    3、平均分布是“最不确定”的分布。

    下面举两个例子来说明这一点。
    例1、考虑一个取值为0或1的随机变量 X X X,满足(0, 1)分布,记 p = P ( x = 1 ) p = P(x=1) p=P(x=1)。根据熵的定义,有:

     H ( X ) = − p l o g ( p ) − ( 1 − p ) l o g ( 1 − p ) H(X) = -plog(p) - (1-p)log(1-p) H(X)=plog(p)(1p)log(1p)

    如图,当 p = 0 p=0 p=0 p = 1 p=1 p=1时,我们肯定地知道 X X X的取值,不确定性最小, H ( X ) = 0 H(X) = 0 H(X)=0。当 p = 0.5 p=0.5 p=0.5时,对 X X X的取值的不确定性达到最大,此时 H ( X ) = 1 H(X) = 1 H(X)=1。该例子验证了上面熵的性质。
        在这里插入图片描述

    例2、记 X X X Y Y Y Z Z Z分别为掷硬币、掷骰子,以及从54张扑克牌中随意抽取一张的结果。显然 X X X的不确定性最小, Y Y Y的不确定性居中,而 Z Z Z的不确定性最大。与之相应,这3个随机变量的熵之间也恰恰存在这样的关系,即 H ( X ) &lt; H ( Y ) &lt; H ( Z ) H(X) &lt; H(Y) &lt; H(Z) H(X)<H(Y)<H(Z)

     H ( X ) = ∑ 1 2 1 2 l o g ( 2 ) = l o g 2 H(X) = \sum_{1}^{2} \frac{1}{2} log(2) = log2 H(X)=1221log(2)=log2

     H ( Y ) = ∑ 1 6 1 6 l o g ( 6 ) = l o g 6 H(Y) = \sum_{1}^{6} \frac{1}{6} log(6) = log6 H(Y)=1661log(6)=log6

     H ( Z ) = ∑ 1 54 1 54 l o g ( 54 ) = l o g 54 H(Z) = \sum_{1}^{54} \frac{1}{54} log(54) = log54 H(Z)=154541log(54)=log54

    用 ∣ X ∣ |X| X来记作 X X X变量的取值个数,又称为变量的势。

    熵的基本性质如下:
    1、 H ( X ) &gt; = 0 H(X) &gt;= 0 H(X)>=0
    2、 H ( X ) &lt; = l o g ∣ X ∣ H(X) &lt;= log|X| H(X)<=logX,等号成立的条件,当且仅当 X X X的所有取值 x x x P ( X = x ) = 1 ∣ X ∣ P(X=x) = \frac{1}{|X|} P(X=x)=X1


互信息、联合熵、条件熵

1、互信息

    如图,通过该图理解互信息比较容易。一般而言,信道中总是存在着噪声和干扰,信源发出消息 x x x,通过信道后信宿只可能收到由于干扰作用引起的某种变形 y y y。信宿收到 y y y后推测信源发出 x x x的概率,这一过程可由后验概率 p ( x ∣ y ) p(x|y) p(xy)来描述。相应的,信源发出 x x x的概率 p ( x ) p(x) p(x)称为先验概率。定义 x x x的后验概率与先验概率比值的对数为 y y y x x x的互信息量(简称互信息)。其公式如下:

    互信息定义: I ( y , x ) = I ( y ) − I ( y ∣ x ) = l o g P ( y ∣ x ) P ( y ) I(y, x) = I(y) - I(y|x) = log \frac{P(y|x)}{P(y)} I(y,x)=I(y)I(yx)=logP(y)P(yx)

        在这里插入图片描述

    互信息的性质如下:

    1、互信息可以理解为,收信者收到信息 X X X后,对信源 Y Y Y的不确定性的消除。
    2、互信息 = I I I(先验事件) - I I I(后验事件) = l o g 后 验 概 率 先 验 概 率 log\frac {后验概率}{先验概率} log
    3、互信息是对称的。

    平均互信息: I ( X ; Y ) = ∑ X , Y   P ( X , Y ) l o g P ( X , Y ) P ( X ) P ( Y ) I(X;Y) = \sum_{X,Y} \ P(X,Y)log\frac{P(X,Y)}{P(X)P(Y)} I(X;Y)=X,Y P(X,Y)logP(X)P(Y)P(X,Y)
    平均互信息又称为信息增益。

2、联合熵

    联合熵是借助联合分率分布对熵的自然推广,两个离散随机变量 X X X Y Y Y的联合熵定义为:

     H ( X , Y ) = ∑ X , Y   P ( X , Y ) l o g 1 P ( X , Y ) = − ∑ X Y   P ( X , Y ) l o g ( X , Y ) H(X,Y) = \sum_{X,Y} \ P(X,Y)log \frac{1}{P(X,Y)} = -\sum_{XY} \ P(X,Y)log(X,Y) H(X,Y)=X,Y P(X,Y)logP(X,Y)1=XY P(X,Y)log(X,Y)

3、条件熵

    条件熵是利用概率分布对熵的一个延伸。随机变量 X X X的熵是用它的概率分布 P ( X ) P(X) P(X)来定义的。如果知道另一个随机变量 Y Y Y的取值为 y y y,那么 X X X的后验分布即为 P ( X ∣ Y = y ) P(X|Y=y) P(XY=y)。利用条件分布可以定义给定 Y = y Y=y Y=y X X X的条件熵为:

     H ( X ∣ Y = y ) = − ∑ X P ( X ∣ Y = y ) l o g P ( X ∣ Y = y ) H(X|Y=y) = -\sum_X P(X|Y=y)logP(X|Y=y) H(XY=y)=XP(XY=y)logP(XY=y)

    熵 H ( X ) H(X) H(X)变量的是随机变量 X X X的不确定性,条件熵 H ( X ∣ Y = y ) H(X|Y=y) H(XY=y)变量的则是已知 Y = y Y=y Y=y后, X X X的不确定性。
    熵的链式规则:

     H ( X , Y ) = H ( X ) + H ( Y ∣ X ) = H ( Y ) + H ( X ∣ Y ) H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y) H(X,Y)=H(X)+H(YX)=H(Y)+H(XY)

     I ( X ; Y ) + H ( X , Y ) = H ( X ) + H ( Y ) I(X;Y) + H(X,Y) = H(X) + H(Y) I(X;Y)+H(X,Y)=H(X)+H(Y)

    如图所示为联合熵、条件熵和互信息之间的关系:
        在这里插入图片描述
    边缘独立定理:从信息论角度为“边缘独立”这一概念提供了一个直观解释,即两个随机变量相互独立当且仅当它们之间的互信息为0。
    接下来考虑3个变量 X X X Y Y Y Z Z Z之间的条件独立关系。条件熵 H ( X ∣ Z ) H(X|Z) H(XZ)是给定 Z Z Z X X X剩余的不确定性,如果进一步再给定 Y Y Y,则 X X X剩余的不确定性变为 H ( X ∣ Z , Y ) H(X|Z,Y) H(XZ,Y)。因此,这两者之差即是给定 Z Z Z时观测 Y Y Y的取值会带来的关于 X X X的信息量,即:

     I ( X ; Y ∣ Z ) = H ( X ∣ Z ) − H ( X ∣ Z , Y ) I(X;Y|Z) = H(X|Z) - H(X|Z,Y) I(X;YZ)=H(XZ)H(XZ,Y)

    称为给定 Z Z Z Y Y Y关于 X X X的信息,容易证明 I ( X ; Y ∣ Z ) = I ( Y ; X ∣ Z ) I(X;Y|Z) = I(Y;X|Z) I(X;YZ)=I(Y;XZ)。于是, I ( X ; Y ∣ Z ) I(X;Y|Z) I(X;YZ)也称为给定 Z Z Z X X X Y Y Y之间的条件互信息。

    定理:对任意3个离散随机变量 X X X Y Y Y Z Z Z,有:

    1、 I ( X , Y ∣ Z ) &gt; = 0 I(X,Y|Z) &gt;= 0 I(X,YZ)>=0

    2、 H ( X ∣ Y , Z ) &lt; = H ( X ∣ Z ) H(X|Y,Z) &lt;= H(X|Z) H(XY,Z)<=H(XZ)

    上述定理的意义在于,它从信息论的角度为随机变量之间的“条件独立”这一概念提供了一个直观解释,即给定 Z Z Z,两个随机变量 X X X Y Y Y相互条件独立,当且仅当它们的条件互信息为零,或者说, Y Y Y关于 X X X的信息已全部包含在 Z Z Z中,从而观测到 Z Z Z后,再对 Y Y Y进行的观测不会带来关于 X X X的更多信息。另外,如果 X X X Y Y Y在给定 Z Z Z时相互不独立,则 H ( X ∣ Z , Y ) = H ( X ∣ Z ) H(X|Z,Y) = H(X|Z) H(XZ,Y)=H(XZ),即在已知 Z Z Z的基础上对 Y Y Y的进一步观测将会带来关于 X X X的新信息,从而降低 X X X的不确定性。


交叉熵和KL散度

1、交叉熵

     H ( P ; Q ) = − ∑ P p ( Z ) l o g P q ( Z ) H(P;Q) = -\sum P_p(Z)logP_q(Z) H(P;Q)=Pp(Z)logPq(Z)

    1、交叉熵常用来衡量两个概率分布的差异性。
    2、在Logistic中的交叉熵为其代价函数。

2、相对熵与变量独立

    相对熵定义:对定义随机变量 X X X的状态空间 Ω x \Omega_x Ωx上的两个概率分布 P ( X ) P(X) P(X) Q ( X ) Q(X) Q(X),可以用相对熵来度量它们之间的差异,即有:

     K L ( P , Q ) = ∑ X P ( X ) l o g P ( X ) Q ( X ) KL(P,Q) = \sum_X P(X)log \frac{P(X)}{Q(X)} KL(P,Q)=XP(X)logQ(X)P(X)

    其中,约定 0 l o g 0 q = 0 0log\frac{0}{q} = 0 0logq0=0 p l o g p 0 = ∞ plog\frac{p}{0} = \infty plog0p= ∀ p &gt; 0 \forall p &gt; 0 p>0 K L ( P , Q ) KL(P,Q) KL(P,Q)又称为 P ( X ) P(X) P(X) Q ( X ) Q(X) Q(X)之间的 K L KL KL散度。但严格来讲它不是一个真正意义上的距离,因为 K L ( P , Q ) ≠ K L ( Q , P ) KL(P,Q) \neq KL(Q,P) KL(P,Q)̸=KL(Q,P)

    定理:设 P ( X ) P(X) P(X) Q ( X ) Q(X) Q(X)为定义在某个变量 X X X的状态空间 Ω x \Omega_x Ωx上的两个概率分布,则有:

     K L ( P , Q ) &gt; = 0 KL(P,Q) &gt;= 0 KL(P,Q)>=0

    其中,当且仅当 P P P Q Q Q相同,即 P ( X = x ) = Q ( X = x ) P(X=x) = Q(X=x) P(X=x)=Q(X=x) ∀ x   ε   Ω x \forall x \ \varepsilon \ \Omega_x x ε Ωx时等号成立。

    推论,对于满足 ∑ f ( X ) &gt; 0 \sum f(X) &gt; 0 f(X)>0的非负函数 f ( X ) f(X) f(X),定义概率分布 P ∗ ( X ) P^*(X) P(X)为:

     P ∗ ( X ) = f ( X ) ∑ X   f ( X ) P^*(X) = \frac {f(X)} {\sum_X \ f(X)} P(X)=X f(X)f(X)

    那么,对于任意其他的概率分布 P ( X ) P(X) P(X),则有:

     ∑ X f ( X ) l o g P ∗ ( X ) ⩾ ∑ X f ( X ) l o g P ( X ) \sum_X f(X)logP^*(X) \geqslant \sum_X f(X)logP(X) Xf(X)logP(X)Xf(X)logP(X)

    其中,当且仅当 P ∗ P^* P P P P相同时等号成立。

    定理:互信息与变量独立之间的两个关系,首先有如下定理,对任意两个离散随机变量 X X X Y Y Y有:

    1、 I ( X , Y ) ⩾ 0 I(X,Y) \geqslant 0 I(X,Y)0

    2、 H ( X ∣ Y ) ≤ H ( X ) H(X|Y) \leq H(X) H(XY)H(X)

    上述两式当且仅当 X X X Y Y Y相互独立时等号成立。

    如下,交叉熵与 K L KL KL散度之间的关系:
        在这里插入图片描述

本文摘自《NLP汉语自然语言处理原理与实践》

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值