# igllib 202_gaussian curvature

the original tutor is like:

there are some points I wanna mention:

1. the discrete Gaussian curvature formula it listed is wrong. How? listen to me explain.

According to the paper "Discrete Differential-Geometry Operators for Triangulated 2-Manifolds" section 4.2, it says

#include <igl/gaussian_curvature.h>
#include <igl/massmatrix.h>
#include <igl/invert_diag.h>
#include <igl/viewer/Viewer.h>
#include <igl/jet.h>
#include "tutorial_shared_path.h"

int main(int argc, char *argv[])
{
using namespace Eigen;
using namespace std;
MatrixXd V;
MatrixXi F;

VectorXd K;
// Compute integral of Gaussian curvature
igl::gaussian_curvature(V,F,K);
// Compute mass matrix
SparseMatrix<double> M,Minv;
igl::massmatrix(V,F,igl::MASSMATRIX_TYPE_DEFAULT,M);
igl::invert_diag(M,Minv);
// Divide by area to get integral average, note this line
K = (Minv*K).eval();

// Compute pseudocolor
MatrixXd C;
igl::jet(K,true,C);

// Plot the mesh with pseudocolors
igl::viewer::Viewer viewer;
viewer.data.set_mesh(V, F);
viewer.data.set_colors(C);
viewer.launch();
}

2. I want to offer some material to help readers understand the geometrical meaning

07-18 420

06-21 922

08-02 665

05-17 1222

04-07 1946

01-03 2490

11-29 2145

10-17 286

12-21 164

12-17 8280