1、模型能力与性能
-
参数量与任务复杂度
-
小模型(1.5B-8B):适合基础任务,如文本生成、简单问答、短文本理解。推理速度快但逻辑推理和多步任务能力有限。
-
中模型(14B-32B):平衡性能与资源消耗,能处理复杂问答、代码生成、中等长度文本分析。
-
大模型(70B以上):在复杂推理(数学、代码)、长文本理解、多模态任务中表现突出,支持细粒度控制(如格式/风格指定)。
-
超大规模(如671B):可能采用混合专家(MoE)架构,激活部分参数以提升效率,接近人类专家水平,适用于科研、专业领域分析。
-
2、训练与推理成本
- 1.5B-7B:训练成本相对很低,推理时对硬件要求也相对较低,可在移动端或低配 GPU(如 RTX 3060)运行,内存占用约 3-15GB4。
- 8B-14B:训练成本和对硬件的要求有所上升,但仍可在一些中等性能的硬件上进行训练和推理。
- 32B-70B:训练需要较多的计算资源和时间,推理时需要较高性能的硬件支持,可能需采用量化等技术来降低资源需求5。
- 671B:训练需要大量的计算资源,如众多的高性能 GPU,训练时间极长,并且需要海量的数据来支撑,训练成本极高;推理时需要极高的硬件配置,显存需求超过 336GB。
3、性能与准确性
- 1.5B-7B:属于轻量级模型,在简单任务如文本摘要、短对话、简单的文本生成等方面表现尚可,但遇到复杂或罕见的问题时,准确性可能会降低4。
- 8B-14B:性能较 1.5B-7B 有所提升,能处理一些复杂度稍高的任务,但在复杂逻辑推理等方面仍有一定局限。
- 32B-70B:在各种基准测试和实际应用中的准确性通常较高,在逻辑推理、代码生成、知识问答等复杂任务上表现较好4。
- 671B:在各类任务上的准确性通常是最高的,尤其在数学推理、复杂逻辑问题解决、长文本理解与生成等方面,能更准确地给出答案和合理的解释
4、应用场景
-
1.5B-8B:移动端应用(如输入法建议)、IoT设备对话、实时翻译。
-
14B-32B:企业级客服、代码补全(如IDE插件)、教育辅助工具。
-
70B-671B:科研(文献分析/假设生成)、金融预测、法律合同解析、影视剧本创作。
5、架构优化差异
-
小模型:可能采用量化(INT8/FP16)、知识蒸馏提升效率。
-
大模型:
-
32B+:引入稀疏注意力、分层计算优化长文本处理。
-
671B(MoE):专家路由机制,每个token仅计算2-4个专家,实际激活参数量约12B-24B,兼顾性能与效率。
-
6、训练数据与领域适配
-
1.5B-14B:通用语料(网页/书籍),支持中英双语。
-
32B+:加入领域数据(如GitHub代码、学术论文、多语言平行语料),支持代码/数学符号的特殊编码。
-
671B:可能融合多模态预训练数据(图像/文本对),为后续多模态任务预留接口。
7、边际效应与性价比
-
性能增长曲线:7B→70B时,MMLU等基准测试分数提升约40%;70B→671B时提升约15%,但成本增长10倍以上。
-
推荐选择:
-
个人开发者:7B-14B(开源可微调)。
-
企业服务:32B-70B(API调用)。
-
科研/高精度场景:70B+或MoE版本。
-