#灵感# 图像质量的评价,看一看书上怎么说?
目录
图像质量评价是检测图像处理(ISP)、编码和传输方法性能好坏的重要依据。
定义:
图像质量包含 ”逼真度“、可懂度(图像提供信息的能力)。图像和视频信源的数据称为信息量和信息冗余量之和,冗余信息表现为图像信号的高度相关性。
图像压缩的实质就是减少其相关性,典型的方法是将图像信号从”空间域“ 转为到”频率域“。为提高图像压缩效率,人们通常采用有损压缩,这就造成压缩图像恢复质量的下降,导致视觉失真。不同的编码方法,失真效应也不一样。基于块的编码算法产生的方块效应较为严重,而基于小波变换的压缩编码,容易引起模糊和振铃效应。
压缩技术导致的失真效应有几种:
1、方块效应blocking artifact,基于块的压缩算法,相邻块相互独立的DCT 系数量化造成编码块边界的不连续性,不连续的程度反映了方块效应的大小。
2、模糊效应 blurring, 由于高频系数的粗量化造成了内容空间细节的丢失和边缘清晰度的下降,从而产生了模糊效应。
3、振铃效应ringing,图像量化 尤其是对高频分量的粗量化引起的高对比度边缘处的抖动现象。在对比度高的区域比较明显,平滑区域则不明显。
4、闪烁效应 flickering, 当视频中景物的纹理比较复杂时,对相邻图像内的纹理部分采用不同的量化因子,会导致视频中的该纹理部分的闪烁。
5、蚊噪效应 mosquito noise, 是由采用块匹配的运动估计和补偿算法引起的,通常出现在同一序列各帧的相同区域,主要是结构平滑的区域。当亮度或色彩信号随高对比度区域的边缘或移动物体的不断变化时容易产生蚊噪。
6、色彩流失效应,color bleeding。 色彩信息高频分量失真引起的颜色差别明显的区域内色彩的丢失。由于进行色彩亚抽样,这种效应可能扩散至整个宏块。
图像压缩后 的数据对误码比较敏感,由于采用运动补偿和熵编码等技术,信道误码又会引起扩散,这将导致接收端恢复质量的急剧下降。仅靠解码端的误码检测,无法及时准确的恢复图像的错误区域,还可能导致内容错位,导致边缘块不连续。所以检测和评价 误码,对图像质量有重要意义。
图像质量的主观评价
主观评价反映人的视觉感受,是较为准确和直接的图像质量评价方法。(在很多不算高端的camera产品中,主观评价是唯一的图像质量评价方法)
评分方法:
绝对评价,由若干非专业的观察者对被测图像的优劣进行数字打分,然后取平均分。通常会提供一组标准图像作为参考,绝对评价采用” 全优度尺度“。
非常好 | 5分 |
好 | 4分 |
中等 | 3分 |
差 | 2分 |
非常差 | 1分 |
相对评价,由评估专家对一批图像的由好到坏进行分类。相对评价采用”群优度尺度“。
该批中最好的 | 7分 |
比平均水平好的 | 6分 |
稍好于平均水平 | 5分 |
该批平均水平 | 4分 |
稍次于平均水平 | 3分 |
比平均水平差的 | 2分 |
该批中最差的 | 1分 |
为保证主观评价在统计上有意义,观察者一般有两个群体:对图像领域不了解的外行,对图像技术有一定了解的内行。参加评分的观察者应不少于 20人,因主观评价结果受到实验环境的影响,测试条件也应尽可能与使用条件相匹配。在主观评价中,常用的指标是国际规定的基于5级评分的质量尺度和妨碍尺度,一般人采用质量尺度,专业人员采用 妨碍尺度。
评价方法:
BT.500-11定义了几种主观质量评价方法
(1)双刺激损伤尺度 DSIS 。观察者观看多个 ”参考视频 vs 测试视频“ 的视频对,每次先观看参考视频,再观看测试视频,用5分制对测试视频的失真度进行打分。
观看的测试过程为 T1=10秒 参考视频 ——>T2= 3秒灰度图像——>T3=10秒 测试视频——>T4=5~11秒 灰度图像。
测试形式有两种,一种是只显示一次,一种是显示两次,在第二次显示时进行评分。重复显示对于失真度小的视频,评分会更准确。
(2)双刺激连续质量分级DSCQS。观察者依旧观察 视频对,但是测试视频和 参考视频的显示顺序随机,观察者对视频对的两个视频都打分。观测者可多次观察视频对,静止图像一般重复显示5次,一次4秒。
(3)单刺激评价法 SSM,观察者观察随机显示的多个测试视频,并打分。不同的观察者,测试视频的显示顺序不一样。方式也有两种,一种不重复放映,一种多次重复放映。常用5级评分测度。
(4) 单刺激连续质量评价 SSCQE。只观察测试视频,但观察时间较长,最少5分钟。
研究表明,DSIS适合特殊效应引起的视觉失真,DSCQS 反映视频间细微的质量差别。
总结:
主观质量评价能准确的反映图像的质量,但是因为测试环境复杂、观察者知识背景差异等多种因素的影响,其稳定性、实时性、可移植性较差。
图像质量的客观评价:
客观质量评价是基于 ”仿人眼视觉模型“的原理,进行客观评估。用测试图像和标准图像之间的误差来衡量图像恢复的质量。
客观质量评价分为3类:
(1)全参考质量评价,需要完整的参考图像,通过比较参考图像和测试图像来评估图像质量。原始参考图像能提供大量的参考信息,有助于建立评价模型,大多数的客观质量评价方法,都是基于全参考质量评价模型。
(2)弱参考质量评价,又称部分参考质量评价。对参考图像和测试图像进行运算得到少量数据,对这些数据进行分析来评价质量。
(3)无参考质量评价,不需要任何原始参考图像,非常适合实时评价(比如网络终端的视频质量)。现有的多种方法是对测试图像进行分析处理,提取某些失真特征(噪声、模糊、块效应等等),然后根据失真特征来评价质量。
客观评价的参数:
ITU-R 规定两个简单的技术参数:均方误差、峰值信噪比。
传统的客观质量评价参数,几乎都是用均方误差及它的各种变形来表示。
(1)均方误差相关参数
(2)信噪比相关参数
基于人类视觉的图像质量评价方法
人们对图像质量判断的过程受到多种因素的影响:亮度、模糊(清晰)度、相关度。
利用这些相关因素,构造一个多维空间,将原始标准图像映射到原点,对数字图像的质量评价可以通过函数
,将参考图像
映射到空间一点
,根据点p到原点的距离来判断质量,通常使用欧式距离计算。
基于结构相似度的图像质量评价方法
图像的像素之间有很强的从属关系,其中包含大量的结构信息。人类的视觉系统高度适合从视觉场景中提取结构信息。对结构信息变化的测量能够很好的逼近感知图像质量的变化。基于此,提出基于结构相似度的客观评价方法。该方法把图像评价分为三部分,亮度比较、对比度比较、结构比较,然后把三个结果进行乘积运算,来评价图像质量。。
基于视觉兴趣性的图像质量评价方法
人眼在观看一副图像时,只对某一部分的细节有良好的分辨力,不能同时分辨其它区域。与此同时,人类的视觉还有选择性,在观察视频时,能够不自觉地对画面中发生显著变化的区域产生兴趣(比如纹理,或者亮度变化)。这些区域就是视觉感兴趣区域。
这类评价方法,将图像分为两部分:感兴趣区域(可以是多个)+ 背景区域,通过分析”感兴趣区域“的多个影响因素,得出不同区域的兴趣加权系数,以加权的形式改进均方误差。