【车辆重识别论文阅读笔记——HFE】

写在前面

通过生成对抗学习和设计的多尺度注意力模块,使得ReID网络获得更好的判别性能。其中生成对抗部分并未特别了解,网络结构部分的多尺度设计等适合参考。

1. Abstract

本文工作主要包括三部分内容:

  1. 提出了一个学习多尺度学习的网络结构,能够吸收粗和细颗粒度的特征。
  2. 训练网络的过程中用对抗网络模块生成hard negative,并且用对抗性判别器进行训练
  3. 采用辅助任务识别车辆的整体特性(包括颜色、车型)辅助提升embedding的质量,并且在推理过程中有助于初筛掉大量目标。

2. Method

2.1 Overview

在这里插入图片描述
网络整体结构如图,其中Hard Negative Generator 和Embedding Dsicriminator都仅应用在训练过程,实际推理的过程中只有HFE网络在工作。

2.2 HFE (Hierarchical Feature Extractor)

将Backbone的不同尺度特征图分别输入Multi-scale Attention模块,获得128维特征向量,最后对不同的embeddings进行池化操作,得到一个embeddings作为global feature。另外不同的embeddings通

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值