[阅读心得] 车辆重识别经典论文——HFE
写在前面
通过生成对抗学习和设计的多尺度注意力模块,使得ReID网络获得更好的判别性能。其中生成对抗部分并未特别了解,网络结构部分的多尺度设计等适合参考。
1. Abstract
本文工作主要包括三部分内容:
- 提出了一个学习多尺度学习的网络结构,能够吸收粗和细颗粒度的特征。
- 训练网络的过程中用对抗网络模块生成hard negative,并且用对抗性判别器进行训练
- 采用辅助任务识别车辆的整体特性(包括颜色、车型)辅助提升embedding的质量,并且在推理过程中有助于初筛掉大量目标。
2. Method
2.1 Overview
网络整体结构如图,其中Hard Negative Generator 和Embedding Dsicriminator都仅应用在训练过程,实际推理的过程中只有HFE网络在工作。
2.2 HFE (Hierarchical Feature Extractor)
将Backbone的不同尺度特征图分别输入Multi-scale Attention模块,获得128维特征向量,最后对不同的embeddings进行池化操作,得到一个embeddings作为global feature。另外不同的embeddings通