车辆重识别相关论文

本文提出了一种k-互惠编码方法用于行人重识别的再排序,通过考虑图像的k-互惠最近邻关系,利用杰卡德距离改进检索准确性。该方法无需人工交互或标记数据,适用于大规模数据集,并在多个基准数据集上展现出有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

局部特征增强的方法

在这里插入图片描述

re-ranking相关

Re-ranking Person Re-identification with k-reciprocal Encoding

摘要

当将person re-ID看作一个检索过程时,re-ranking是提高其准确性的关键步骤。然而,在re-ID社区中,对re-ranking的努力有限,尤其是那些全自动、无监督的解决方案。在本文中,我们提出了一种k-reciprocal编码方法来re-ranking re-ID的结果。我们的假设是,如果一个gallery图像与k-reciprocal nearest neighbors中的probe查询相似,则更有可能是真正的匹配。具体地,给定图像,通过将其k-reciprocal nearest neighbors编码为单个向量来计算k-reciprocal特征,该向量用于在杰卡德距离(Jaccard Distance:用来衡量两个集合差异性的一种指标)下re-ranking。最终的距离计算为原始距离和杰卡德距离的组合。我们的re-ranking方法不需要任何人工交互或任何标记数据,因此适用于大规模数据集。在大型Market-1501、CUHK03、MARS和PRW数据集上的实验证实了我们方法的有效性。

https://blog.csdn.net/hyk_1996/article/details/79849408
看下公式,用Jaccard距离,公式非常漂亮,【构建矩阵的方式进行rerank】

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值