基于TradingView和CTPBee的自动化期货交易系统实现

引言

在量化交易领域,TradingView因其强大的技术分析工具和丰富的指标库而广受欢迎,但是其不支持国内期货自动化交易,CTPBee则是一个优秀的国产Python期货交易接口。本文将介绍如何将两者结合,实现一个完整的自动化交易系统。
本文代码库已开源发布到GitHub上,访问链接:https://github.com/sencloud/tradingview_ctp

系统架构

整个系统分为三个主要部分:

  1. TradingView策略和告警
  2. Flask后端API服务
  3. CTPBee交易执行器

1. TradingView策略设计

TradingView提供了强大的策略编写功能,我们可以使用Pine Script编写交易策略。以下是一个简单的示例:

//@version=5
strategy("My Trading Strategy", overlay=true)

// 定义策略参数
fastLength = input(9, "Fast Length")
slowLength = input(21, "Slow Length")

// 计算指标
fastMA = ta.sma(close, fastLength)
slowMA = ta.sma(close, slowLength)

// 定义交易信号
longCondition = ta.crossover(fastMA, slowMA)
shortCondition = ta.crossunder(fastMA, slowMA)

// 设置告警条件
alertcondition(longCondition, "开多仓", "{{ticker}} 开多仓信号")
alertcondition(shortCondition, "开空仓", "{{ticker}} 开空仓信号")

2. TradingView告警设置

在TradingView中设置告警时,需要配置以下内容:

  1. 告警名称:便于识别
  2. 告警条件:选择策略中定义的alertcondition
  3. 告警消息:包含交易信息
  4. Webhook URL:指向我们的Flask API端点

告警消息格式示例:

{
  "symbol": "{{ticker}}",
  "action": "BUY",
  "price": {{close}},
  "strategy": "long",
  "volume": 1
}

3. Flask后端实现

Flask后端负责接收TradingView的webhook请求,并将信号保存到数据库:

from flask import Flask, request, jsonify
from database import DatabaseConnection

app = Flask(__name__)
db = DatabaseConnection()

@app.route('/webhook', methods=['POST'])
def webhook():
    data = request.json
    try:
        # 验证数据
        required_fields = ['symbol', 'action', 'price', 'strategy', 'volume']
        if not all(field in data for field in required_fields):
            return jsonify({'error': '缺少必要字段'}), 400
            
        # 保存信号到数据库
        with db.get_cursor() as c:
            c.execute('''
                INSERT INTO trading_signals 
                (symbol, action, price, strategy, volume, status)
                VALUES (?, ?, ?, ?, ?, 'pending')
            ''', (data['symbol'], data['action'], data['price'], 
                 data['strategy'], data['volume']))
        
        return jsonify({'message': '信号接收成功'}), 200
    except Exception as e:
        return jsonify({'error': str(e)}), 500

4. CTPBee交易执行器

CTPBee交易执行器负责监控数据库中的交易信号,并执行相应的交易操作:

from ctpbee import CtpBee
from ctpbee.constant import OrderRequest, Direction, Offset, OrderType

class SignalMonitor:
    def __init__(self):
        self.app = CtpBee("signal_trader", __name__)
        self.load_config()
        
    def execute_order(self, symbol, price, volume, direction, signal_id):
        """执行交易订单"""
        try:
            # 创建订单请求
            order_req = OrderRequest(
                symbol=symbol,
                exchange=self.get_exchange(symbol),
                price=price,
                volume=volume,
                direction=Direction.LONG if direction == "BUY" else Direction.SHORT,
                offset=Offset.OPEN,
                type=OrderType.LIMIT,
                order_id=f"ORDER_{signal_id}"
            )
            
            # 发送订单
            self.app.send_order(order_req)
            
            # 更新信号状态
            self.update_signal_status(signal_id, "submitted")
            
        except Exception as e:
            logger.error(f"下单失败: {str(e)}")
            self.update_signal_status(signal_id, "failed", str(e))

5. 风控管理

系统实现了基本的风控功能:

  1. 最大持仓限制
def check_position_limit(self, symbol):
    """检查持仓限制"""
    positions = self.app.center.positions
    current_position = sum(p.volume for p in positions if p.symbol == symbol)
    return current_position < self.max_position
  1. 自动平仓功能
def close_positions(self, symbol, direction):
    """平仓处理"""
    positions = self.app.center.positions
    for pos in positions:
        if pos.symbol == symbol and pos.direction == direction:
            close_req = OrderRequest(
                symbol=symbol,
                exchange=self.get_exchange(symbol),
                price=self.get_latest_price(symbol),
                volume=pos.volume,
                direction=Direction.SHORT if direction == Direction.LONG else Direction.LONG,
                offset=Offset.CLOSETODAY,
                type=OrderType.LIMIT
            )
            self.app.send_order(close_req)

数据可视化

使用Streamlit实现数据可视化,展示交易统计和账户信息:

import streamlit as st
import plotly.express as px

def show_trading_dashboard():
    st.title("交易信号仪表板")
    
    # 账户信息
    col1, col2, col3 = st.columns(3)
    with col1:
        st.metric("账户余额", f"¥{account_info['balance']:,.2f}")
    with col2:
        st.metric("可用资金", f"¥{account_info['available']:,.2f}")
    with col3:
        st.metric("持仓盈亏", f"¥{account_info['position_profit']:,.2f}")
    
    # 交易信号统计
    signal_stats = get_signal_statistics()
    fig = px.pie(signal_stats, values='count', names='action')
    st.plotly_chart(fig)

部署注意事项

  1. 配置文件管理
  • 使用config_[sim|ctp].json区分模拟盘和实盘配置
  • 包含CTP连接信息、交易参数等
  1. 数据库设计
  • 使用SQLite存储交易信号和账户信息
  • 实现信号状态追踪和错误处理
  1. 性能优化
  • 使用NumExpr优化计算性能
  • 实现异步处理机制
  • 添加日志记录
  1. 安全考虑
  • 实现API认证机制
  • 加密敏感信息
  • 添加请求频率限制

总结

本文介绍了一个基于TradingView和CTPBee的自动化交易系统实现方案,究其设计原因是因为CTPBee是运行独占式,无法接收外部API请求,故而另辟蹊径,通过定时读取sqlite数据库里的交易信号来实现开平仓动作,而对外提供API接口来接收Tradingview的告警信号,并在收到后写入sqlite数据,这种模式对实时性要求极差,适合于5分钟线行情以上的交易策略。系统通过TradingView的策略和告警功能生成交易信号,通过Flask API接收和处理信号,最后使用CTPBee执行实际的交易操作。系统还实现了基本的风控功能和数据可视化,为交易决策提供支持。

参考资料

  1. TradingView Pine Script文档
  2. CTPBee文档
  3. Flask文档
  4. Streamlit文档
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旻璿gg

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值