How Does Batch Normalization Help Optimization?

1. 摘要

BN 是一个广泛应用的用于快速稳定地训练深度神经网络的技术,但是我们对其有效性的真正原因仍然所知甚少。

输入分布的稳定性和 BN 的成功之间关系很小,BN 对训练过程更根本的影响是:它让优化更加平滑。这种平滑让梯度更加可预测更加稳定,从而加速训练。

2. BN 和 internal covariate shift

在原始论文 Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift 中,作者认为 BN 减小了所谓的 internal covariate shift(ICS),这也被认为是 BN 成功的根基。

于是,作者就做了一个实验。在有和没有 BN 的情况下分别训练了一个 VGG 网络,然后观察某一层在训练过程中的分布情况。

可以看到,加入 BN 后训练速度和准确度都有所提升,但是某一层的分布情况却相差甚微。基于此观察,作者提出了两个问题:

  1. BN 的有效性是否真的和 ICS 有关?
  2. BN 让输入分布稳定是否能有效减小 ICS?

接下来,我们对这两个问题问题深入探讨。

2.1. BN 的性能提升是否来源于控制 ICS

BN 的中心思想就是说控制输入分布的均值和方差可以提升训练性能,怎么才能证明吗?那我们就来看看在 BN 后面引入随机噪声会发生什么。

这里的噪声在每一次都是不一样的,所以就会使激活值产生严重的偏移,实验结果如下。

引入噪声后的 BN 相比标准网络分布更加不稳定,但是在训练过程中依然表现非常好,这显然与之前的说法冲突。

2.2. BN 是否能减小 ICS

上面的实验说明,如果我们将 ICS 和输入分布的均值及方差稳定性联系在一起的话,显然 ICS 和训练性能没有直接联系。但是,我们可能会怀疑:是否有一个对 ICS 更广泛的定义使其与训练性能有直接联系呢?如果是的话,BN 确实能减小 ICS 吗?

原论文中关于 ICS 的定义是:网络中参数的变化引起的输入分布的变化。为了衡量前面层参数的更新而导致后面参数需要调整的程度,我们来比较每一层在前面所有层参数更新前后的梯度差异。也就有了下面的定义:

这样,G 和 G’ 的差异就反映了输入的变化引起的优化环境相对于权重的变化。针对上面的定义,作者比较了有无 BN 的网络在训练过程中上述差异的变化情况,如下所示。

可以看到,配备了 BN 后,上述差异变化得反而更加剧烈,尤其是相对于没有激活函数的 DLN 网络。也即是,从优化的角度来说, BN 甚至没有减小 ICS。

3. BN 为什么有效

除了减小 ICS,BN 还有其他很多优点:防止梯度消失爆炸、对诸如学习率和参数初始化策略的不同设置比较鲁棒、防止落入激活函数的饱和区。这些特性明显都有利于训练,但是,它们都是 BN 简单的结果而不是真正底层的原因。

3.1. BN 的平滑效果
  • 概念引入

一个函数 f 是 L-Lipschitz 的,如果它满足:

非负的实数 L 是斜率的最小上确界,称之为利普希茨常数。

也就是说,利普希茨常数限制了函数可以改变得多快。换句话说,如果没有利普希茨常数,函数可以无限快地改变,也就是不连续了。

将上式展开可以得到:

也就是固定了 x1,x2 的函数值是一个线性函数,并且被 L 约束在了一个范围内。

一个连续可微的函数是贝塔平滑的如果它的梯度满足贝塔利普希茨,也就是:

同理我们可知,贝塔平滑是限制一个函数的一阶导数变化得多快的。

作者发现,BN 的关键作用是让优化过程更加平滑,也就是,损失改变得更慢而且梯度的幅值也更小。更深层次的原因则是 BN 的重新参数化让损失函数更加利普希茨更加贝塔平滑。

引入 BN 后的损失函数就像上面的右图那样更加平滑,梯度更加可靠更加可预测,即使我们走了一大步,梯度的方向仍然是真实梯度的准确估计。

3.2. 优化过程的探索

为了展示 BN 对优化过程的稳定,作者进行了下面的实验。在训练过程中的每一步,通过移动不同的步长,我们来观察损失函数、梯度的变化情况。

可以发现,引入 BN 后损失函数、梯度以及“有效”的贝塔平滑都更加稳定。

3.3. BN 是最好的或者唯一的平滑优化过程的方法吗?

作者发现,用范数进行归一化也可以取得和 BN 类似的效果,BN 的有效可能只是一个偶然的发现。

3.4. 理论分析

针对未引入 BN 的普通网络以及引入 BN 后的网络,作者推导了它们梯度的相对关系。

引入了 BN 后,损失函数相对于激活函数值的梯度幅值更小,也即损失函数更加利普希兹。

引入了 BN 后,损失函数相对于激活函数值的二阶项幅值更小,也即损失函数更加贝塔平滑。

同理,损失函数相对于权重的梯度幅值也更小。

引入 BN 后,权重的最优解与初始解的距离也更小,也即神经网络更快就可以训练到最佳表现。

获取更多精彩,请关注「seniusen」!

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值