Bacth Normalization出现背景
深度神经网络的“深”意味着性能强,但同时也意味着训练难:“梯度消失”,“梯度爆炸”等问题难以解决。人们把这种问题的出现归咎于internal covariate shift(内部协变量变化)。为了解决这个所谓的ICS,2015年谷歌的Sergey Ioffe,Christian Szegedy(Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift)借鉴机器学习里数据预处理“白化”的思想,提出了Batch normalization:
标准化将原来层间数值的分布强行变为(0,1)的正态分布。同时,为了防止这种强行改变会影响特征的提取,BN在标准化之后又加了一个可学习的缩放与平移:
完整算法:
对数据简单的标准化处理,再加入只有两个参数的一个线性层,却取得了惊人的效果,可以让模型使用更大的学习率同时对初始值敏感性减小,收敛的更快。
BN的作用原理
1、BN与ICS没有太大关系
2、BN的实际作用在于增强了损失函数的 Lipschitz性质,使得损失函数平面更加平滑,意味着梯度消失及爆炸并不会出现。
定理表明BN处理后,模型的梯度上界比BN处理前小的多,说明此时损失函数平面更加平滑。
这个定理说表损失函数对参数的二阶导的上界也变小了,说明BN处理后训练过程中梯度的变化也不会太大。
这个定理表明BN处理后网络对参数的初始值敏感度下降。
后记
这个原理解释是2018年MIT几位博士的工作,整体证明数学知识并没有要求太多,但是ICS却也误导了大家这么多年。明说DL真的需要数学家的参与,从数学的角度出发,为DL搭建起底层理论。