这段文字介绍了在 Quantopian 平台上使用自定义数据进行回测的方法。作者提到了两种使用自定义数据的方法:一种是直接加载数据到内存,另一种是使用数据包(bundles)。作者更倾向于第一种方法,因为它更简单易懂。
作者详细讲解了如何使用 Pandas 库加载 CSV 文件到内存并将其转换为数据框(DataFrame)。数据框类似于 Excel 表格,包含开盘价、最高价、最低价、收盘价和成交量等信息。每个符号的数据都存储在一个独立的数据框中,最后使用 Pandas 的 Panel 对象将所有数据框组合成一个三维数据结构,方便进行分析和回测。
作者还提到了数据的大小限制,如果数据量超过了内存容量,就需要使用其他方法。最后,作者展示了如何使用 Pandas 库创建数据面板,并强调了使用 PyTZ 库确保时间区域一致性的重要性。
总而言之,这段文字介绍了在 Quantopian 平台上使用自定义数据进行回测的具体方法,并提供了详细的代码示例,方便读者理解和实践。
欢迎来到 Zipline 本地回测教程系列的第 3 部分。到目前为止,我们已经展示了如何在本地运行 Zipline,但我们一直在使用预制数据集。在本教程中,我们将介绍如何使用本地数据,只要您能够将这些本地数据放入内存中。文本教程和示例代码:https://pythonprogramming.net/custom-data-zipline-local-python-programming-for-finance/