poj 3436 ACM Computer Factory 网络流EK算法

本文介绍了一种基于最大流算法EK(Edin-Karp)的应用案例,通过构建特定的图模型来解决一台机器如何加工计算机的问题,并详细展示了算法实现的代码。文章首先解释了题目背景,接着介绍了EK算法的具体实现步骤,最后提供了完整的代码实现。
摘要由CSDN通过智能技术生成

题意:

      有n台机器编号为1,2,3,..i..n,每台机器可以加工qi台计算机,计算机的状态由他的p个零件的有无表示,再给出每台机器对计算机状态的改变情况,求这个系统最多能生产多少台计算机和机器间计算机的传递情况。

分析:

     理解题意有点难,因为有最大加工数限制建图记得拆点,然后EK解决,EK比dinic慢但是简洁而且比较好展示各条边上的流量情况。

代码:

//poj 3436
//sep9
#include <iostream>
#include <queue>
using namespace std;
const int MAXN=60;
const int MAXP=12;
int in[MAXN][2*MAXP],flow[2*MAXN][2*MAXN];
int n,p;

int EK(int s,int t)
{
	queue<int> q;
	int p[MAXN*2],a[MAXN*2];
	int f=0;
	while(1){
		memset(a,0,sizeof(a));
		a[s]=INT_MAX;
		q.push(s);
		while(!q.empty()){
			int u=q.front();q.pop();
			for(int v=0;v<=2*n+1;++v)
				if(!a[v]&&flow[u][v]){
					p[v]=u,q.push(v);
					a[v]=min(a[u],flow[u][v]);
					if(v==t) break;
				}
		}
		if(a[t]==0)	break;
		for(int u=t;u!=s;u=p[u]){
			flow[p[u]][u]-=a[t];
			flow[u][p[u]]+=a[t];
		}
		f+=a[t];
	}
	return f;	
}

int main()
{
	while(scanf("%d%d",&p,&n)==2){
		for(int i=1;i<=n;++i)
			for(int j=0;j<2*p+1;++j)	
				scanf("%d",&in[i][j]);
		for(int i=1;i<=2*p;++i){
			in[0][i]=0;
			in[n+1][i]=1;
		}
		memset(flow,0,sizeof(flow));
		for(int i=1;i<=n;++i)
			flow[i][i+n]=in[i][0];
		for(int i=0;i<=n+1;++i)
			for(int j=0;j<=n+1;++j){
				if(i==j) continue;
				bool flag=true;
				for(int k=1;k<=p;++k){
					if(in[j][k]!=2&&in[i][k+p]!=in[j][k]){
						flag=false;
						break;
					}
				}
				if(flag&&i==0) flow[0][j]=in[j][0];
				else if(flag&&j==n+1) flow[i+n][2*n+1]=in[i][0];
				else if(flag) flow[i+n][j]=min(in[i][0],in[j][0]);
			}
		printf("%d ",EK(0,2*n+1));
		int cnt=0;
		for(int i=1;i<=n;++i)
			for(int j=1;j<=n;++j)
				if(flow[j][i+n]>0&&i!=j)
					++cnt;			
		printf("%d\n",cnt);
		for(int i=1;i<=n;++i)
			for(int j=1;j<=n;++j)
				if(flow[j][i+n]>0&&i!=j)
					printf("%d %d %d\n",i,j,flow[j][i+n]);
					
	}
	return 0;	
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值