在CV领域,Backbone 是模型性能的基石。而**双Backbone结构(Dual-Backbone)**的引入,带来了显著的优势,具体来说,双Backbone具备以下优点:
-
特征表达更丰富:两条不同特性的Backbone可以提取互补的信息,兼顾局部细节和全局感知。
-
更强的多尺度建模能力:双路径自然涵盖不同尺度特征,对小目标、大目标都更友好。
-
提升模型鲁棒性:不同路径的特征互补,能够增强模型在复杂环境下的稳定性和泛化能力。
-
灵活的特征融合方式:通过拼接、加权、注意力机制等方式,可以进一步提升特征利用率。
-
适配多样任务需求:无论是检测、分割还是识别,双Backbone都能根据任务特点灵活调整。
简单来说,双Backbone=更强特征、更好效果、更高适应性,是快速提升模型性能和论文创新性的利器。今天就用一篇文章,手把手教你:什么是双Backbone?怎么设计?怎么应用到论文中快速出成果?
1. 双Backbone的设计思路
目前,主流的双Backbone设计可以分为两大类:
1. 共享输入(Shared-Input)
两条Backbone同时接收同一张输入图像,但通过不同结构、不同感知方式提取特征。
这种方式主要目的是在保持输入一致性的前提下,丰富特征空间表达,通常一条专注局部细节,一条侧重全局语义。
特点:
-
设计灵活,容易与现有主干网络兼容。
-
通过差异性特征提取,实现信息互补和增强。
-
适合各类检测、分割等视觉任务,尤其在复杂场景中效果明显提升。
2. 双输入(Dual-Input)
给两条Backbone分别输入不同形式的图像数据,例如:
-
原图直接输入一条主干网络;
-
小波变换图、频域图、边缘检测图等经过特定预处理后输入另一条主干网络。
这种设计能够引入更多不同领域的信息,进一步拓展模型的感知能力。
特点:
-
能有效融合空间域与频域、纹理与轮廓等多种特征类型。
-
有利于提升模型对小目标、边缘细节、复杂纹理的感知能力。
-
适合需要高精度特征解析的应用场景,如医学影像分析、遥感图像处理等。
2. 双Backbone的改进
今天使用的模块主要分为这三个LWN、DIA-Module、MFM,下面时这三个模块的链接。
1.第一个创新点为YOLO双backbone
2.第二个创新点为在其中一个backbone中添加LWN提取频域特征,增强边缘、纹理特征。
3.第三个创新点为在另一个backbone中添加DIA-Module,利用可变形交互注意力模块提取变化丰富的裂纹形变特征。
4.第四个创新点为使用MFM模块,融合空间域与频域、纹理与轮廓等特征,提高对裂分的检测能力。
YOLO11改进-模块-引入核选择融合注意力KSFA 增大感受野,提高多尺度 小目标检测能力-CSDN博客
YOLO11改进-模块-引入小波卷积WaveletConv 增加频域信息-CSDN博客
YOLO11改进-模块-引入调制融合模块MFM 动态融合不同层的特征,增强检测精度-CSDN博客
3.视频教程
YOLOv11模型改进讲解,教您如何改进双backbone提升YOLO11检测精度_哔哩哔哩_bilibili
4.实验结果
方法 | Double | LWN | MFM | DIA-Head | mAP50 |
YOLOv11n | 86.30 | ||||
YOLOv11n | √ | 86.50 | |||
YOLOv11n | √ | √ | 87.20 | ||
YOLOv11n | √ | √ | 86.80 | ||
YOLOv11n | √ | √ | √ | 87.60 | |
YOLOv11n | √ | √ | 87.10 | ||
ALL | √ | √ | √ | √ | 88.20 |
5.添加模块
1.添加LWN DIA-Module模块
2.导包
3.模型搭建
4.配置文件
5.代码运行
from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld
if __name__=="__main__":
# 使用自己的YOLOv8.yamy文件搭建模型并加载预训练权重训练模型
model = YOLO(r"E:\Part_time_job_orders\YOLOv11_double_backbone\YOLOv11_double_backbone_change\ultralytics\cfg\models\11\change_cancat\yolo11_double_MFM.yaml")\
# .load(r'E:\Part_time_job_orders\YOLOv11_double_backbone\YOLOv11_DB\yolo11n.pt') # build from YAML and transfer weights
results = model.train(data=r"E:\Part_time_job_orders\YOLOv12_double_backbone\YOLOv12_double_backbone\ultralytics\cfg\datasets\VOC_my.yaml",
epochs=300,
imgsz=640,
batch=4,
# cache = False,
# single_cls = False, # 是否是单类别检测
# workers = 0,
# resume=,
amp = True
)
6.结构