一文教你如何使用双backbone改进,快速发论文

        在CV领域,Backbone 是模型性能的基石。而**双Backbone结构(Dual-Backbone)**的引入,带来了显著的优势,具体来说,双Backbone具备以下优点:

  • 特征表达更丰富:两条不同特性的Backbone可以提取互补的信息,兼顾局部细节和全局感知。

  • 更强的多尺度建模能力:双路径自然涵盖不同尺度特征,对小目标、大目标都更友好。

  • 提升模型鲁棒性:不同路径的特征互补,能够增强模型在复杂环境下的稳定性和泛化能力。

  • 灵活的特征融合方式:通过拼接、加权、注意力机制等方式,可以进一步提升特征利用率。

  • 适配多样任务需求:无论是检测、分割还是识别,双Backbone都能根据任务特点灵活调整。

简单来说,双Backbone=更强特征、更好效果、更高适应性,是快速提升模型性能和论文创新性的利器。今天就用一篇文章,手把手教你:什么是双Backbone?怎么设计?怎么应用到论文中快速出成果?

 1. 双Backbone的设计思路

目前,主流的双Backbone设计可以分为两大类:

1. 共享输入(Shared-Input)

两条Backbone同时接收同一张输入图像,但通过不同结构、不同感知方式提取特征。
这种方式主要目的是在保持输入一致性的前提下,丰富特征空间表达,通常一条专注局部细节,一条侧重全局语义。

特点

  • 设计灵活,容易与现有主干网络兼容。

  • 通过差异性特征提取,实现信息互补和增强。

  • 适合各类检测、分割等视觉任务,尤其在复杂场景中效果明显提升。

2. 双输入(Dual-Input)

给两条Backbone分别输入不同形式的图像数据,例如:

  • 原图直接输入一条主干网络;

  • 小波变换图、频域图、边缘检测图等经过特定预处理后输入另一条主干网络。

这种设计能够引入更多不同领域的信息,进一步拓展模型的感知能力。

特点

  • 能有效融合空间域与频域、纹理与轮廓等多种特征类型。

  • 有利于提升模型对小目标、边缘细节、复杂纹理的感知能力。

  • 适合需要高精度特征解析的应用场景,如医学影像分析、遥感图像处理等。

2. 双Backbone的改进

        今天使用的模块主要分为这三个LWN、DIA-Module、MFM,下面时这三个模块的链接。

1.第一个创新点为YOLO双backbone

2.第二个创新点为在其中一个backbone中添加LWN提取频域特征,增强边缘、纹理特征。

3.第三个创新点为在另一个backbone中添加DIA-Module,利用可变形交互注意力模块提取变化丰富的裂纹形变特征。

4.第四个创新点为使用MFM模块,融合空间域与频域、纹理与轮廓等特征,提高对裂分的检测能力。

YOLO11改进-模块-引入核选择融合注意力KSFA 增大感受野,提高多尺度 小目标检测能力-CSDN博客

YOLO11改进-模块-引入小波卷积WaveletConv 增加频域信息-CSDN博客
YOLO11改进-模块-引入调制融合模块MFM 动态融合不同层的特征,增强检测精度-CSDN博客

3.视频教程

YOLOv11模型改进讲解,教您如何改进双backbone提升YOLO11检测精度_哔哩哔哩_bilibili

4.实验结果 

方法

 Double

LWN

MFM

DIA-Head

mAP50

                      YOLOv11n

86.30

                       YOLOv11n     √        86.50
                      YOLOv11n     √

87.20

                      YOLOv11n     √

86.80

                      YOLOv11n     √

87.60

                      YOLOv11n     √

87.10

                            ALL     √

88.20

5.添加模块

1.添加LWN DIA-Module模块

2.导包

 3.模型搭建

4.配置文件

5.代码运行

from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld

if __name__=="__main__":

    # 使用自己的YOLOv8.yamy文件搭建模型并加载预训练权重训练模型
    model = YOLO(r"E:\Part_time_job_orders\YOLOv11_double_backbone\YOLOv11_double_backbone_change\ultralytics\cfg\models\11\change_cancat\yolo11_double_MFM.yaml")\
        # .load(r'E:\Part_time_job_orders\YOLOv11_double_backbone\YOLOv11_DB\yolo11n.pt')  # build from YAML and transfer weights

    results = model.train(data=r"E:\Part_time_job_orders\YOLOv12_double_backbone\YOLOv12_double_backbone\ultralytics\cfg\datasets\VOC_my.yaml",
                          epochs=300,
                          imgsz=640,
                          batch=4,
                          # cache = False,
                          # single_cls = False,  # 是否是单类别检测
                          # workers = 0,
                         # resume=,
                          amp = True
                          )

 6.结构

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值