spark 读取clickhouse 非数值型字段并行分区设置

本文介绍如何使用 Spark JDBC 读取 ClickHouse 数据库时进行有效的分区优化,特别是针对非数值型字段的情况。通过将字段值进行分组并利用 SQL 的 IN 操作来减少连接数,降低连接被拒绝的风险。
摘要由CSDN通过智能技术生成

spark 读取clickhouse 非数值型字段并行分区设置

spark jdbc读取clickhouse

用spark采用jdbc读取clickhouse,mysql等数据库时,可以根据Long型设置分区字段,如下:

  def jdbc(
  url: String,
  table: String,
  columnName: String,    # 根据该字段分区,需要为整形,比如id等
  lowerBound: Long,      # 分区的下界
  upperBound: Long,      # 分区的上界
  numPartitions: Int,    # 分区的个数
  connectionProperties: Properties): DataFrame

也可根据具体的字段

jdbc(
  url: String,
  table: String,
  predicates: Array[String],
  connectionProperties: Properties): DataFrame

但是当选择的字段比较多时,连接数会很大,运行一段时间会有拒绝连接的风险。

解决的办法是对字段Array进行分组,并用 in 操作来进行分区,具体如下:

//JDBC分区信息
    //grouped 对数组进行分组,每组4个
    val typeIdArray =
      Array(
        "201c51890000000001000000000000000000000040",
        "201c51890000000001000000000000000000000041",
          ……
        "201c51890000000001000000000000000000000046".grouped(4)
       .map(x => "typeId in ('" + x.mkString("','") + "')").toArray

   val readData = spark.read
      .jdbc(url, table, predicates, prop)

	//前面设置了分区后,读数时不需要再设置typeid in 了。
   readData.select(
      col("ts_date"),
      col("deviceId"),
      col("typeId"),
      col("value"))
      .where(col("ts_date").===(partitiondate))

重点的设置在.map(x => “typeId in (’” + x.mkString("’,’") + “’)”).toArray 中,一定要对分组拼接一下,并按sql语法组成条件,实际执行时,spark会自动把这个信息加载到后面的select中。

在clickhouse中,可以查看具体连接的query

SELECT query_id,read_rows,elapsed,client_hostname,query From system.processes ;
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风翔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值