转自知乎 机器学习怎么入门
https://www.zhihu.com/question/20691338
如果对算法感兴趣,当拥有最基础的知识之后,就可以尝试对某个感兴趣的领域展开一些研究,利用问题驱动自己,逐渐形成self-motivation.
在解决问题的过程中不断提升自己的视野,提升自己对问题的洞察力和研究的自信可能是更为重要的
但在这样的过程中,基础薄弱所带来的问题可能会浮现:每每你读论文,会遇到许多闻所未闻的概念,这时为了弄清整个论文的逻辑,你不得不跑回去了解这些知识。
这样你又一头扎进了知识的海洋,在几十个搜索出来的网页之间切来切去,尝试弄明白一个个预备知识的预备知识,缺不知道这一块块拼图何时才能拼完你最初想读懂的论文。
如果你有一个足够强大又足够耐心的导师,可能会很大程度帮到你,单大部分的导师不会如此体贴入微--他们只会在大方向上引导你。这时我们需要的是一个知识结构上贴心的“导师”,告诉你为了看懂这个概念,哪些知识你需要学,为什么这些知识重要,怎样快速了解这些知识。我们需要一幅清晰的知识图谱,以帮我们最快速地解决我们需要解决的问题。
这是Metacademy的建设初衷。Metacademy会把各个知识点联系起来,就像游戏里的技能树一样。每个知识点都有简介,而且会链接到那些优质的学习资源上,最重要的是, 他会画出通向这个知识点的知识图谱。Metademy的建设目标是“Your package manager for knowledge”,但现在上面暂时只集成了一些机器学习和相关的数学知识。
例如搜索red-black tree 这里用我自己的例子
一层一层知识间的关系变得清晰起来。再怎么新手,pointer, recursion还是知道的。虽然要学习的知识客观量上没有改变,但不再是淹没在知识的海洋里,而是面对知识的阶梯一步一步向上走。这样的感觉是截然不同的, 而在研究过程中,感觉是非常重要的一环。