如何成为当下一个合格的算法工程师
知乎上看了SimonS大神的一个live做了一些笔记一,Q&A部分:
1.一个特征分析的例子。。。(听不懂)2. 还是一个机器学习的例子,(听不懂)大致,降低复杂度。
3. 传统算法合格的标准,Leetcode(简单,中等毫无压力,hard难度有一定时间思考可以解决)
4. Machine Learning算法基础,数学基础(统计学,微积分,线性代数,离散数学)
5. 数据挖掘相关的竞赛
(ACM没太大帮助,仅仅针对传统算法, 针对数据挖掘的竞赛:Kagle, KDD数据挖掘)
6. 算法工程师需要博士么?
live主只有本科学历,和基础知识。
(硕士比较有必要 因为面试结果好于本科,也就是认可度较高)
7. 高维空间xxx相关的问题(还是听不懂)
8. 基础烂的人,如何学习算法?
(花时间去补基础,锻炼自己独立学习独立解决问题的能力)
9. 数据挖掘要学spark?
Live主认为python足够。
10. 合格的算法工程师需要的数学基础?
后续另外一个部分介绍
11. 怎样练习算法?指传统的算法和数据结构
1)以模块化形式 针对训练。例如学习图轮,相对于刷图论相关的题目
学习动态规划,刷动态规划相关的题目。
(根据模块学习和训练)
2)leetcode 随机刷题。自己想方案来解决
(根据实际问题选择算法解决问题)
12. 有一定高数基础和机器学习的基础概念,如何实际训练
Kaggle 和KDD 训练,
尝试写爬虫自己挖掘数据进行研究。
13. 应用数学/统计专业如何转型算法
1)学习写代码。例如python
2)稳固统计学,并学习机器学习相关的知识。
14. 数据挖掘工程师,有必要深入研究传统算法,例如算法导论么?