1. 随机游动模型
1.1 经过 n 步以后的位置特征
1.1.1 一维概率分布
若质点移动 n 步后到达η n= m 的位置,则所有的移动中,正方向移动
n
+
m
2
\frac{n + m}{2}
2n+m 步,反方向移动
n
−
m
2
\frac{n - m}{2}
2n−m步
这里的是组合数C(n+m)/2n
1.1.2 例题
1.
1.2 经过n步返回原点的概率
1.3 第一次返回原点的概率
第 2n 步第一次返回原点的概率记作:
2. 马尔可夫链
2.1 状态分析
如图所示,状态2出发后不能返回自身,所以2是非常返态
2.2 例题
2.2.1 天气预报问题
2.2.2 带有两个吸收壁的随机游动
2.2.3 赌徒问题
3. 泊松过程
均值:E{N(t)}=λt
方差:D{N(t)}=λt
自相关函数:
自协方差函数:在这里插入图片描述
3.1 第一个事件到达时间的概率密度
3.2 第 n 个事件到达时间 t 的概率密度
3.3 非齐次泊松过程*
例题:
1.
2.
4. 马尔可夫过程
4.1 机器维修问题
4.2 排队问题
4.2.1 无限队长
4.2.2 有限队长
5. 非线性优化
5.1 凸函数
5.2 线搜索技术
5.2.1 0.618法
5.2.2 进退法
5.3 牛顿法
5.3.1 基本牛顿法
5.3.2 牛顿-最速下降混合算法
5.5 最小二乘法
二次多项式
5.6 KT条件求最优性条件
例题:
1.
5.7 罚函数
5.7.1 内点法
例题:
1.
5.7.2 外罚函数法
例题:
1.