应用数学期末整理

该文涵盖了随机游动模型的一维概率分布和返回原点概率,详细解释了马尔可夫链的状态分析和各类应用,包括天气预报和赌徒问题。此外,讨论了泊松过程的特性及非齐次泊松过程,并涉及非线性优化问题,如线搜索技术、牛顿法和罚函数法在解决凸函数和最优化问题中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 随机游动模型

1.1 经过 n 步以后的位置特征

1.1.1 一维概率分布

若质点移动 n 步后到达η n= m 的位置,则所有的移动中,正方向移动 n + m 2 \frac{n + m}{2} 2n+m 步,反方向移动 n − m 2 \frac{n - m}{2} 2nm
在这里插入图片描述
这里的在这里插入图片描述是组合数C(n+m)/2n
在这里插入图片描述

1.1.2 例题

1.在这里插入图片描述
在这里插入图片描述

1.2 经过n步返回原点的概率

在这里插入图片描述
在这里插入图片描述

1.3 第一次返回原点的概率

第 2n 步第一次返回原点的概率记作:
在这里插入图片描述
在这里插入图片描述

2. 马尔可夫链

2.1 状态分析

在这里插入图片描述
在这里插入图片描述
如图所示,状态2出发后不能返回自身,所以2是非常返态
在这里插入图片描述

2.2 例题

2.2.1 天气预报问题

在这里插入图片描述

2.2.2 带有两个吸收壁的随机游动

在这里插入图片描述

2.2.3 赌徒问题

在这里插入图片描述

在这里插入图片描述

3. 泊松过程

在这里插入图片描述
均值:E{N(t)}=λt
方差:D{N(t)}=λt
自相关函数:在这里插入图片描述
自协方差函数:在这里插入图片描述

3.1 第一个事件到达时间的概率密度

在这里插入图片描述

3.2 第 n 个事件到达时间 t 的概率密度

在这里插入图片描述

3.3 非齐次泊松过程*

在这里插入图片描述

例题:
1.
在这里插入图片描述
2.
在这里插入图片描述

4. 马尔可夫过程

4.1 机器维修问题

在这里插入图片描述
在这里插入图片描述

4.2 排队问题

在这里插入图片描述

4.2.1 无限队长

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.2.2 有限队长

在这里插入图片描述

在这里插入图片描述

5. 非线性优化

5.1 凸函数

在这里插入图片描述

5.2 线搜索技术

5.2.1 0.618法

在这里插入图片描述

5.2.2 进退法

在这里插入图片描述

5.3 牛顿法

5.3.1 基本牛顿法

在这里插入图片描述

5.3.2 牛顿-最速下降混合算法

在这里插入图片描述

5.5 最小二乘法

二次多项式
在这里插入图片描述

5.6 KT条件求最优性条件

在这里插入图片描述
例题:
1.
在这里插入图片描述
在这里插入图片描述

5.7 罚函数

5.7.1 内点法

在这里插入图片描述
在这里插入图片描述

例题:
1.
在这里插入图片描述
在这里插入图片描述

5.7.2 外罚函数法


例题:
1.
在这里插入图片描述

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值