笔记01:随机过程——随机游动

一、伯努利随机过程

1. n次伯努利实验中(x=1)发生的总次数Yn:

Y_n = \sum_{i=1}^{n} X_i, n=1,2,3,4,\cdots

P_{Y_n}(k)=\binom{n}{k}p^{k}(1-p)^{n-k}

(二项分布)

2. 伯努利实验中事件第一次发生的时间L1:

P_{L_1}(l)=p(1-p)^{l-1}, l=1,2,3,4,5,\cdots

(几何分布)

3. n次伯努利实验中事件第k次发生的时间Lk:

P_{L_k}(n) = \binom{n-1}{k-1}p^{k}(1-p)^{n-k}

(帕斯卡分布)

二、一维随机游动

Y_n = \sum_{k=1}^{n} X_k = Y_{n-1} + X_n

1. 一维随机游动的位置概率

P(Y=r)=p^{k}q^{n-k}\binom{n}{k}, k=0, 1, 2, 3, \cdots , n

其中,k-(n-k) = r \Rightarrow 2k-n = r \Rightarrow k=\frac{n+r}{2}

则,P(Y=r) = \binom{n}{\frac{n+r}{2}} p^{\frac{n+r}{2}} (1-p)^{\frac{n-r}{2}}

其中,r=-n,-n+2,-n+4,\cdots , n-2, n

一维随机游动的状态转移图

赌徒输光(破产)问题

初始赌资为k元,

赌输的概率:

(1)q \neq p

r_k = \frac{(q/p)^k - (q/p)^N}{1-(q/p)^N}

(2)q=p

r_k = 1-\frac{k}{N}

读赢的概率:

(1)q \neq p

r_k = 1-\frac{(q/p)^k-(q/p)^N}{1-(q/p)^N} = \frac{1-(q/p)^k}{1-(q/p)^N}

(2)q=p

r_k = \frac{k}{N}

返回原点的概率

P(Y=r) = \binom{n}{\frac{n+r}{2}} p^{\frac{n+r}{2}} (1-p)^{\frac{n-r}{2}}

r=0n=2k

P(Y=0) =\binom{2k}{k}p^k (1-p)^k

u_{2n} = \binom{2n}{n}p^{n} (1-p)^{n} = \frac{(2n)!}{n! n!} (pq)^n

U(z) = \sum_{n} u_{2n} z^{2n} = \frac{1}{\sqrt{1-4pqz^2}}

\sum_{n} u_{2n} = \frac{1}{\sqrt{1-4pq}} \neq 1

第一次返回原点的概率

B_{2n} = \left \{ Y_1 \neq 0, Y_2 \neq 0, \cdots , Y_{2n-1} \neq 0, Y_{2n} = 0 \right \}

v_{2n} = P(B_{2n})

u_{2n} = v_{2n} + u_{2}v_{2n-2} + u_{4}v_{2n-4} + \cdots + u_{2n-2}v_{2} = \sum_{k=1}^{n} v_{2k} u_{2n-2k}

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值