初始化:G=nx.Graph()
图相关属性的函数:
nx.degree(G)// 计算图的密度,其值为边数m除以图中可能边数(即n(n-1)/2)
nx.degree_centrality(G)//节点度中心系数。通过节点的度表示节点在图中的重要性,默认情况下会进行归一化,其值表达为节点度d(u)除以n-1(其中n-1就是归一化使用的常量)。这里由于可能存在循环,所以该值可能大于1.
nx.closeness_centrality(G)//节点距离中心系数。通过距离来表示节点在图中的重要性,一般是指节点到其他节点的平均路径的倒数,这里还乘以了n-1。该值越大表示节点到其他节点的距离越近,即中心性越高。
nx.betweenness_centrality(G)//节点介数中心系数。在无向图中,该值表示为节点作占最短路径的个数除以((n-1)(n-2)/2);在有向图中,该值表达为节点作占最短路径个数除以((n-1)(n-2))。
nx.transitivity(G)//图或网络的传递性。即图或网络中,认识同一个节点的两个节点也可能认识双方,计算公式为3*图中三角形的个数/三元组个数(该三元组个数是有公共顶点的边对数,这样就好数了)。
nx.clustering(G)//图或网络中节点的聚类系数。计算公式为:节点u的两个邻居节点间的边数除以((d(u)(d(u)-1)/2)。