参考资料
- 《社会媒体挖掘》
传递性
传递连接
假设 v 1 v_{1} v1、 v 2 v_{2} v2、 v 3 v_{3} v3表示三个结点,当存在边 ( v 1 , v 2 ) \left ( v_{1},v_{2}\right ) (v1,v2)和 ( v 2 , v 3 ) \left ( v_{2},v_{3}\right ) (v2,v3)时,若 ( v 3 , v 1 ) \left ( v_{3},v_{1}\right ) (v3,v1)也存在,此时就存在一个传递连接行为(传递性)。
通俗地讲,传递性就是我朋友的朋友也把我当朋友。
通过度量传递性可以决定一个图与完全图的相近程度,而传递性又可以通过(全局)聚类系数或局部聚类系数计算得到。前者是基于整个网络,而后者是基于一个结点。
聚类系数
聚类系数分析了无向图的传递性。当存在三角形时,便可以观察到传递性。因此,可以使用三角形的个数来定义:
C = ( 三 角 形 的 个 数 ) × 3 结 点 的 连 接 三 元 组 的 个 数 C=\frac{\left ( 三角形的个数\right )\times 3}{结点的连接三元组的个数} C=结点的连接三元组的个数(三角形的个数)×3
分子乘以3是因为三角形缺失一条边可以形成三种不同的三元组;分母就是所有三元组的个数,即为三角形的个数乘以3加上未构成三角形的三元组的个数。
局部聚类系数
从结点层面来度量传递性,广泛应用于无向图中,定义为:
C v i = v i 的 邻 居 结 点 所 构 成 的 连 接 的 结 点 对 数 目 v i 的 邻 居 结 点 所 构 成 的 结 点 对 的 数 目 C_{v_{i}}=\frac{v_{i}的邻居结点所构成的连接的结点对数目}{v_{i}的邻居结点所构成的结点对的数目} Cvi=vi的邻居结点所构成的结点对的数目vi的邻居结点所构成的连接的结点对数目
通俗地讲,看结点邻居结点对存在连接的数量占结点对总数量的多少。
相互性
相互性常被称为简化后的传递性,因为它只考虑有向图中的长度为2 的闭合循环。形式化地,如果结点 v v v和结点 u u u相连接, u u u通过连接到 v v v来表现出相互性。例如微博中的相互关注。
相互性就是统计图中相互连接的结点对的个数。当且仅当图中的所有边都相互连接时,有向图中相互连接的结点对的个数最大为 ∣ E ∣ / 2 \left | E\right |/2 ∣E∣/2。因此,该值可以被当作归一化的因子。相互性可以通过邻接矩阵 A A A来计算:
R = ∑ i , j , i < j A i , j A j , i ∣ E ∣ / 2 = 2 ∣ E ∣ ∑ i , j , i < j A i , j A j , i = 2 ∣ E ∣ × 1 2 T r ( A 2 ) = 1 ∣ E ∣ T r ( A 2 ) R=\frac{\sum_{i,j,i< j}^{}A_{i,j}A_{j,i}}{\left | E\right |/2}\\ =\frac{2}{\left | E\right |}\sum_{i,j,i< j}^{}A_{i,j}A_{j,i}\\ =\frac{2}{\left | E\right |}\times \frac{1}{2}Tr\left ( A^{2}\right )\\ =\frac{1}{\left | E\right |}Tr\left ( A^{2}\right ) R=∣E∣/2∑i,j,i<jAi,jAj,i=∣E∣2∑i,j,i<jAi,jAj,i=∣E∣2×21Tr(A2)=∣E∣1Tr(A2)