目标跟踪
mini猿要成长QAQ
一步一步脚印,踏踏实实向前~~~
展开
-
Struck: Structured Output Tracking with Kernels
目前正在学习Struck SVM,拜服于作者的新颖思路,之后会时常查阅,所以把整篇paper翻译了一遍,以便理解与进步。翻译 2016-08-30 16:26:38 · 5273 阅读 · 1 评论 -
代码阅读:MDNet
demo_tracking1、调用mdnet_init执行初始化net以及各种参数的操作。2、bbox回归训练总括:采用了 bounding box regression technique,这个广泛的应用于 Object detection,来改善定位的准确度。根据给定视频的第一帧,训练一个简单地线性回归模型来预测目标物体的位置,用的是 Conv 3 的特征。在随后的视频帧中,如果预测的目标是可...原创 2018-04-09 11:52:02 · 5110 阅读 · 9 评论 -
论文阅读:MDNet: Learning Multi-Domain Convolutional Neural Networks for Visual Tracking
CVPR2016 来自Korea的POSTECH这个团队大部分算法(例如HCF, DeepLMCF)只是用在大量数据上训练好的(pretrain)的一些网络如VGG作为特征提取器,这些做法证实利用CNN深度特征对跟踪结果有显著提升。但是毕竟clssification 和 tracking是两个不同的课题(predicting object class labels VS locating ...原创 2018-04-09 11:27:50 · 14547 阅读 · 6 评论 -
论文阅读:A New Target-specific Object Proposal Generation Method for Visual Tracking
A New Target-specific Object Proposal Generation Method for Visual Tracking这篇论文提出了一种 target-specific object proposal generation (TOPG) method并且将这种proposal generation方法应用在Visual Tracking中,取得了特别好的效果。出发点...原创 2018-04-09 11:20:51 · 893 阅读 · 2 评论 -
非深度特征CF目标跟踪算法发展(从底部到顶部的顺序)
今年还没有更新博客,不能犯懒,之前整理的东西还是要及时放上来,以便之后查阅。相关资料:①@H Hakase维护的相关滤波类资源github:https://github.com/HakaseH/TBCF#scale②@Qiang Wang维护的资源benchmark_results:大量顶级方法在OTB库上的性能对比,各种论文代码应有尽有,大神自己C++实现并开源的CSK, KCF和DATgith...原创 2018-04-08 12:08:57 · 6024 阅读 · 2 评论 -
目标跟踪数据集VOT2016使用教程
为了方便进行VOT数据集的使用说明,需要先下载好vot-toolkit-master以及DSST算法的代码(用于测试)。完整代码下载地址话不多说,过程如下。1、运行toolkit_path.m2、打开workspace文件夹,运行workspace_create.m在运行的过程中,需要我们选择数据集以及输入tracker名原创 2017-12-12 18:27:49 · 31952 阅读 · 60 评论 -
知乎大神YaqiLYU关于tracking方向的2013-2016趋势总览!!!强烈推荐!!!
真真实实的学习tracking也有半年了,tracking的主流趋势年年改变,每年都有新的突破。从CT、IVT到struck,到TLD、到CF,再到火热的CNN也应用到了tracking领域。作为初入领域的学习者,需要在打好机器学习各种算法的基础上,了解每年顶级会议以及期刊中tracking的发展方向,尽力把握前沿动态。下面是对知乎大神YaqiLYU的年年总结的转载,对于把握从2013年到20转载 2017-04-17 21:02:34 · 14255 阅读 · 6 评论 -
总结:相关滤波器(Correlation Filters)
本文是对相关滤波器(Correlation Filters)相关paper的理解和总结,不过对于我来说,KCF实在不好理解,感觉好多地方理解的不彻底,错误之处还请指出,共同进步。原创 2017-03-30 18:12:27 · 45338 阅读 · 19 评论 -
总结:MUSTer中的keypoint matching以及利用RANSAC去除outliers
原创 2017-03-30 17:25:33 · 1312 阅读 · 0 评论 -
总结:光流--LK光流--基于金字塔分层的LK光流--中值流
最近的一个月完成了TLD、CF、Muster等一些算法的学习和整理,由于是在word中整理,不便于再在csdn中编辑,就直接截图发上来了,尽请谅解。(其实还是我自己太懒了,不想再重新编辑一遍了...)如果csdn可以直接发布文档成博客就好了,也希望csdn能够尽快完善这一功能。本文是对光流算法的理解,从光流--LK光流--基于金字塔分层的LK光流--中值流,可以对光流算法的发展和应用有一个大致原创 2017-03-30 17:13:24 · 33311 阅读 · 46 评论 -
Struck SVM随记----模型
传统跟踪算法(下图右手边)将跟踪问题转化为一个分类问题,并通过在线学习技术更新目标模型。然而,为了达到更新的目的,通常需要将一些预估计的目标位置作为已知类别的训练样本,这些分类样本并不一定与实际目标一致,因此难以实现最佳的分类效果。而Struck算法(下图左手边)主要提出一种基于结构输出预测的自适应视觉目标跟踪的框架,通过明确引入输出空间满足跟踪功能,能够避免中间分类环节,直接输出跟踪结果。同原创 2017-03-06 15:51:03 · 903 阅读 · 0 评论 -
TLD matlab c++混编代码的运行配置方法
最近在看TLD这篇论文,其作者提供的源代码是matlab与C++混编的,所以在运行代码之前,需要进行一些配置步骤,网上也提供了很多,不过我根据我在配置中遇到的问题总结了一下,应该是比较完整的版本:步骤如下:1、在matlab的command window中输入:mex_setup 选择 y 回车,并选择相应的VS编译器 (这里需要注意:MATLAB 的版本要高于VS的版本才可以,比原创 2017-02-12 18:44:23 · 1318 阅读 · 0 评论 -
捋顺Struck SVM------之--------sv选择准则前导篇
对struck SVM的理解,很关键的一点是对支持向量的选择过程的理解,最终模型的效果好不好,也取决于选择的sv是否具有代表性。 SV序号SV结构1234原创 2016-10-20 21:44:40 · 1311 阅读 · 2 评论 -
捋顺Struck SVM------之--------从一堆sample中选出一些作为sv的准则
仍然是对Struck: Structured Output Tracking with Kernels中思路的理解,原文及代码链接之前的博客中已经甩出来过啦。这次捋顺的是从一堆sample中选出一些作为sv的准则。用我的大白话总结了一下作者的逻辑思路,便于理解,理解这部分用了一个多星期的时间,oh my god!原创 2016-10-19 22:02:19 · 824 阅读 · 0 评论 -
tracker_benchmark_v1.0的使用方法
评估算法的效果,无疑会涉及到很多数据集上的测试Online Object Tracking:A Benchmark 一文中,把之前先进的跟踪算法都集成了起来,通过Precision plot和Success plot来直观展示不同trackers的效果对比。原创 2016-11-08 10:10:22 · 9416 阅读 · 22 评论 -
SVM边学边总结系列——线性可分情况
支持向量机学习的基本想法是求解能够正确划分训练数据集并且几何间隔最大的分离超平面。对训练数据集找到间隔最大的超平面意味着以充分大的确信度对训练数据进行分类。有A、B、C三个点,表示3个实例,均在分离超平面的正类的一侧,预测它们的类。点A距分类超平面较远,若预测该点为正类,就比较确信预测是正确的;原创 2016-09-02 16:25:14 · 1252 阅读 · 0 评论 -
Struck: Structured Output Tracking with Kernels中用到的样本采样方法详解
matlab生成gif动画原创 2016-08-31 14:58:41 · 1046 阅读 · 4 评论 -
论文阅读:SiameseFC
Fully-Convolutional Siamese Networks for Object Tracking这是ECCVw 2016的一篇论文,和staple同出于牛津组。提出一种基于全卷积孪生网络的基本追踪算法模型,能够超实时的帧率达到很高的精度。项目网页 http://www.robots.ox.ac.uk/~luca/siamese-fc.html 开源代码: https://githu...原创 2018-04-09 14:23:38 · 10278 阅读 · 1 评论